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ASCENT FROM THE LUNAR SURFACE 

BY 
Rowland E. Burns 

and 

Larry G. Singlelon 

SUMMARY 

The problem of three-dimensional optimal ascent from the lunar surface is discussed in the 
report using the techniques of variational calculus. The Moon is assumed to be spherical and ro- 
tating, but perturbational effects from all other bodies are neglected. Final orbital inclination is 
calculated under the assumption that the angular displacement of the moon is negligible during 
ascent. Only single stage vehicles are considered and are subdivided into propellant and final 
mass in orbit, i.e., there is no consideration of payload dependencies upon structural mass, etc. 
Furthermore, both the thrust and mass flow rate are assumed constant throughout the powered 
flight for a given vehicle. 

SECTION I. EQUATIONS OF MOTION 

The equations of motion will be derived in a spherical coordinate system. As shown in 
FIG 1, 8 is the latitude angle (measured from the equatorial plane positive toward the north) 
and 4 is the longitude angle (measured from &e Moon’s prime meridian positive in the direction 
of rotation). Let r be the radius vector from the center of the Moon to the vehicle. At the tip . 
of the radius vector let us define an orthogonal system of unit vectors, uy , ;,g , ;b. Let G, 
be collinear with r (positive in the same direction as r); let iie be perpendicular to i?r in a 
plane containing i& and the polar axis (positive in the direction of increasing 0 ): let cb be 
perpendicular to both C, and 2s and chosen to form a right-handed system with Z* and iis. 

- ? 
By trigonometry we can express c, , ze, and i;+ in terms of i , J, and g as 

A 
U r = cos e cos C$ 2 + cos e sin + 7 + sin 8 Z 
A 
u,g = - sin 8 cos $ f - sin 8 sin $ 7 + cos 8 L 

a 
u4 = - sin C$ i^ + cos qi 1’ 

Equations (1) through (3) may be differentiated to yield 

L 

(1) 

(2) 

(3) 

(4) 
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FIGURE’ 2 

GIMBAL ANGLE COORDINATES 



:. l ,. 
. 

uB =-e u, - 4 sin e Gd 

* 
u-* = - (cos 6 72, - sin e & ) $ 

The radius vector, r, may be expressed as 
1 

r = rur 

The velocity may now be defined as 

,,;=;iir 
z . 

+ru, =r7fr * a +rfk,+r+cosei4 

(5) 

(6) 

(7) 

03) 

The acceleration is given as the time derivative of velocity as 

. . . A . * ii 
asv=ru,+2ru, fru,= 

1 Z - ,(8* + $2 cos*e)l G, + [t 4 + 2 2 + I $* sin e cos el Gs 

+ [r Jcose -2r~6sin8+2;~c0s81j~ (9) 

The thrust vector, shown in FIG 2, has direction cosines y and 6. From FIG 2 we may 
write the thrust as 

T = T cos 6 cos y & + Tsin6 G,g +Tcos6siny i+ (10) 

The remaining force, gravity, is always directed along the radius. If we denote ehe accelera- 
tion of gravity as g, the mass of the Moon as M and the universal gravitational constant as G 
we can write 

(11) 

By Newton’s second law we may now write 

ma=T+mg (12) 

where m is the mass of the vehicle. 

Inserting equations (9), (10) and (11) into (12), equating components, and dividing by m 
gives 

;-2(&+$ 
T MG 

cos*e)= m c~s~c~s~- 7 (13) 

74 +2;8+7$*sinecose= x sin S m 

t 4 case -2T$B sin8+2;$cos8= T cos6siny * 
m (15) 

We may now State the problem as follows: Subject to constraints (13), (14) and (15), as well 
as specified initial and final conditions, determine ehe functions y and S as functions of time 
such that the maximum payload is injected into orbit. 

* An alternative derivation of these equations is given in reference.4 . 
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The solution of this problem requires the use of the calculus of variations. As equations 
(13), (1’4) and (15) now stand we would have to make use of second order Lagrange equations. 
To avoid this, we make the following kinematical substitutions: define 

i=p 

fL.l 

(16) 

(17) 

&U (18) 

Substituting (16), (17) and (18) into (13), (14) and (15) and isolating all derivative terms 
gives 

T MC 
p’ - ; cos 6 cos y + 7 - T (o*+u*cos*e)=o (19) 

T (; -- sin 8 + 2po + 0*sint9costl=O 
mr t 

CG- 
T 

m tcos e 
cos6sin y-2outan8 + - = 2PO 0 

I 

One further relationship is required. Since the vehicle is assumed to have a constant mass 
flow rate, r;l, we may write 

m=q -it (22) 

where m is the instantaneous mass, rno the initial mass, and t is the time since lift-off. 

SECTION II. BOUNDARY CONDITIONS 

Before proceeding to the actual variational formulation of the ascent, it will be advan- 
tageous to determine the boundary conditions associated with the problem. We shall denote 
initial values by a zero subscript and final values by an f subscript. At the initial point, 
t = t,, = 0, the vehicle will be assumed to be at resr on the lunar surface. The launch longitude, 

4 n, is arbitrary since we have assumed a spherical Moon. The simplest assumption on &, is 
that it be chosen equal to zero. Furthermore, the first derivative of +a, &, is simply given 
by the angular rate of rotation of the Moon which we shall denote by a. The latitude of launch, 
e o, is arbitrary.* Since ;4 

a 
and uo are perpendicular, the lunar rotation induces no motion in 

iig direction and we may set 8, = 0. 

In summary, we have the following set of initial conditions: 

t=t,=O (23) 

* Except for * $ . The coordinate system chosen is degenerate with respect to 8= ? 5 . 

If launches into polar orbit are of interest, the rotations which produce equations (l), (2) and 
(3) may be reversed in order of application. The resulting equations will be degenerate with 
respect to equatorial launch, f$,= 0, but acceptable to study launch into polar orbits. 
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m = m. 

I = r,, = fc (radius of the Moon) 

; = ‘i. =po =o 

e = B. (arbitrary, but f 2’ 

~=~,=0,=0 

qh =&=O 

C$ = Go = o. = Q (angular velocity of the Moon) 

At the final point we require a ckcular orbit of specified inclination. 
may write the square of the velocity as 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

From equation (8) we 

. . ‘2 
v-v=r*r=f '2 '2 +r2(e ++ cog *eJcp2+ 22(02+u2 cos2 e) (31) 

The condition for circularity may be stated as 

. r.; =!!+C (32) 

Thus 

MG 

or 

p* + 9 w + 62 cos* e) = - 
r 

(33) 

MG-rp*- f3 to2 +u2 cos2 e) = 0 

But, for a circular orbit we must also have at cutoff 

; =p co 

Thus (34) becomes 

(34) 

(35) 

MG -r3 ~02+u2COS2e~=o (36) 

Equations (35) and (36) must be’ fulfilled at t = tp 

We now digress slightly to determine the orbital inclination as a function of the cutoff para- 
meters. 

Assuming that the rotation of the Moon is negligible during ascent,* the final inclination is. 

+ The actual amount of rotation is less than two tenths of a second of arc for the trajectories 
considered. Reference 5 presents a detailed treatment of the effect because of rotation of the 
primary on orbital inclination. 
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readily derivable from spherical trigonometry, if we assume the orbit to be planar. 
3 we have 

\/ sin2 (ef-:eo) +-% sin 2 e. sin 2 er (1 --:cos ef ) 
I 

tan I=. 
cos e. cos ef sin & 

For 0,=-O (equatorial launch) we have 

can ef tan l=.- 
sin +r 

From FIG 

(37) 

(38) 

A more exact equation can be derived for non-planer trajectories by noting that the inclina- 
tion is defined as the angle between the (instantaneous) orbital plane and the equator. A vector 
perpendicular to the orbital plane is 

r x v = r* (- 8 u1+ + $ cos e C,) 

while a unit vector perpendicular to the equatorial.plane is 
,. 

i=: sin e 2;r+.c0s e ue 

(39) 

(40) 

Then 
isrxv 

. 
cos I= = 4 cog e 

It x VI (42 + $2 cos* ep 

giving 
J&+cj* _; tan I =, p. 

sin* e cos*e 
4 cos* e 

(41) 

Equation (37) will be used in the formulation rather than the more exact form given by equa- 
tion (41). This will be justified as an acceptable simplification later in the report. (see p. 22, 
para. 2.) 

SECTION III. VARIATIONAL FORMULATION 

In this section we shall formulate the necessary conditions to maximize the gross weight 
placed in orbit. The problem may be rephrased to read: determine the optimum steering program 
that will minimize propellant consumption for ascent from a given initial point to a prescribed 
set of end conditions. 

The mass of propellant expended may be written as 

. 
mP = mo- mf = mo- Cm,- itf) = mtf (42) 

Equation (42) shows that minimizing the propellant consumpion is equivalent to minimizing the 
time required to attain orb& as is intuitively apparent for the case of a vehicle with constant 
mass flow rate. 

Let us now make the following definitions: define Jr (i = 1,...,6) as 

Ji =i - T cos 6 cos y 
+ MG -- 

m r* 
T w+ u2cos2 e) = 0 

T sin S 
J2=; -mr+ 2po +u*sinecose=O 

1 

J3 =;- 
T cos 6 sin y 

m I cos e 
-200me+ 2pa=O 

T 

(43) 

(44) 

(45) 
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J, =i-p=O 

]s =lLiJ=o 

J6 =&u=O 

Let X, (i = 1,. . . , 6) be time dependent Lagrange multipliers and write 

F = A, Ji (sum on i) 

(W 

(47) 

(48) 

(49) 

Also, define 

r = 1;2tf ful [MG -T;(O; + u,2 cos2ef)l +v2pr 

+ V3 tan I - 
sin* ( er - 8, ) + % sin 2 8, sin 2 8, (1 - cos #+ ) 

cos 8, cos 8, sin qSf ‘I 
(50) 

where the Y’S are constant Lagrange multipliers. 

Let Ye denote any member of the set p, o, u, T, 8, #I and x, either of the control vari- 
ables y, 6. 

We have the problem of finding the steering program, y (t), 6 (t), which minimizes the 
propellant expenditure required to ascend from a given point on the lunar surface into a prespeci- 
fied lunar orbit. This is equivalent to the problem stated in the following theorem which is 
proved in reference 2. 

Given 

s 

t1 
/c=r+ F (“, , ys , ;. , t) dt 

t0 
The necessary conditions to minimize K are given by 

aF 
- = 0 (all time values) 
ax, 

0 (all time values) 

For my ye ‘s not fixed at t = to 

ar -- 
ho ( > 

aF_ 0 
ay. o = 

For any ye ‘s not fixed at t = tf 

(52) 

(53) 

(54) 

ar aF o 
a,,+ a;,,= 0 

(55) 
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For the final time point, t = tt (never fixed) 

ar 
a 4 

- ya$$-- f=O (sumons) 
( ) a 

m 

Since the form of eqiations (43) through (48) g ives explicit representation for the j, 
terms we find that 

and 

Equation (53) may be rewritten in the form 

A -aF=o a 
0 ah 

(57) 

(58) 

(59) 

SECTION IV. VARIATIONAL EQUATIONS 

The expression for F, defined by equation (49), is given in expanded form by 

F=X, j- 
L 

T =Os 6 cos y + MG - r (02 + 02 cos2 /j) 
(m. - it) 22 1 

+A, ;- I T sin 6 2!0 
(m. - ri2 1) T +- t- 

+ a2 sin 0 cos 8 1 
+A, d - 

T cos 6 sin y 
Cm0 - mt)rcosO - 

200 tan0 + 2po 
T 1 

+ A, I;- pl+ x, Ii- 

Applying equation (52) to the control 

dF T 
ay = (7rqJ -&t) =Os s 

For a constant thrust single stage vehicle 

T 
(mo- At) f0 

Thus we must have either 

01 + A, [&ol 

variable y 

(60) 

c 
A3 A, sin y - I cos y 3 = 0 (61) 

(62) 

cos 6 = 0 (63) 
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or 

A 
A, sin y - 3 

T cos 8 
cos y = 0 (64) 

Equation (63) cannot be true at t = to since polar orbits have been ruled out by our 

choice of the coordinate system. At other time points where equation (63) is not fulfilled* we 
have 

or 

and 

tan y = x3 
A, r cos 8 

The Euler equation corresponding to the control variable 6 is 

dF T as = (m,-~j2t) 
II 

hrsin6cosy x2 - 7 Cosa+ 
A ---A- sin 6 sin y 

I cos 8 1 = 0 

C 
A1 cos y + x3 

T cos 8 
sin y 1 x2 sin 6 = - COS 6 

t 

From equation (65) 

sin y = f 
A, 

j/x; + (A, r cos eJ2’ 

cos y = * x1 r cos 8 
d/h,2 + (A, T cos ep 

Inserting (68) and (69) into (67) ,and solving for tan 6 gives 

tan 6 = * x2 cos 8 
q/y -I- (A, r cos e)2 

Since they will be needed later we solve equation (70) for 

* h.J cos 8 
sin ’ =, d (A: 9 + h;).cos2 8 + A;’ 

and 

J( 
A: r2cos2 e+ A; ’ cos s= f h; d+ A; hod 8 + XJ’ 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

* During the numerical integration of the set of equations that will result, the probability that 
equation (63) will actually be fulfilled is negligible since cos 6 = 0 occurs only for discrete 
points. It is a simple matter to insert a flag into the computer program to indicate that equation 
(63) is satisfied and thus equation (64) is no longer fulfilled. With this understanding (which 
is sloppy mathematics, but standard engineering) we may proceed under the assumption that 
equation (63) is never satisfied. 
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Turning now to the application of equation (59) we consider the variables y, in the order 
P, o, 0, 5 0, 4. 

iI - g =i, - $(X,0 +A, a) +A, =o 

i, - g =i, +2(X,r0- + + A, atan0) .th, =O 

(73) 

X,- g = ~3+2[(A,rcose-X,sinO)uc0sO+X3(otanO-~)]+~~=0 

(75) 

x4- g = x, + A, [=g +(d+u* cos*e) 1 + 3 [A, o+x3u] 

T 
(mo-mt)r2 C 

A 2 sin 6 + x3 =Os s sin ‘I cos 0 
=o 

i,- g = is -ur[2X,f sinec0sB+h2 k0s20-sin* e)l 

+ 2X,0 0 sec28 + C-1 A3tan 0 set e= 0 

Equation (78) may immediately be integrated to give 

A,= c I 

(76) 

(77) 

(78) 

(79) 

where C, is some constant of integration. 

SECTION V. SUMMARY OF ANALYTICAL RESULTS 

The equations of motion, (43) through (48) along with the equations of the turn program, 
(65) and (7O), and equations (73) through (77) and (7’9) (which determine the Lagrange multi- 
pliers that are included in the turn program),completely specify the optimal three-dimensional 
steering program of a single-stage constant-thrust vehicle except for initial conditions. While 
the initial conditions specifying position and velocity at t = t,, as well as desired end conditions 
may easily be stated, t!le initial values of X ,,...,Xe are very difficult to determine. Once these 
values are chosen,no degree of freedom is left in the system. The determination of (XI),, . . ..(&)d 
to obtain desired end conditions is discussed below. 

The equations developed in the preceding sections may be reduced in number by inserting 
the expressions for p, o, u from equations (16), (17) and (18) into equations (73) through (77) 
and eliminating the control variables (y, 6) by use of equations (65) and (70).* Equation (79) 

* The sign ambiguity involved in the sine and cosine functions of the control variables will 
be resolved by choosing an upward launch, toward the north, in the direction of the lunar rota- 
tion. With these restrictions the positive sign should be chosen in each case. Further considera- 
tions of sign choice will be given in Section VI. 
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will be used to eliminate A, from equation (75). 

Before making the above substitutions,one further step will be taken to eliminate m. from 
the equations of motion. 0 

The term for thrust to mass ratio may be written 

T, = (T/no ) 
m0 -nit 1; -- t 

m0 

030) 

Now the mass flow rate, &, is related to specific impulse, I,, , by the equation 

T 
7A = (go )@ I,, 

(81) 

where (go)@ is the acceleration of gravity at the Earth’s surface. Substituting equation (81) 
into equation (80) we have 

T 
. = 

m. -mt 

Dividing numerator and denominator of equation (82) by the acceleration of gravity at the 
Moon’s surface, (go ;‘, , we have 

T 1 T/m0 (go A 1 -= 
m0 -mt 1 T t -- 

(so,, mo (go), (go)@ 1.. 
(83) 

(T/m,) = (T/m0 1 
l- 

T 
l - ;;;o 

t 
(go A3 Lp 

The term [ T/m, (go), ] can now be recognized as the initial thrust-to-weight of the vehicle 
evaluated at the lunar surface. We shall abbreviate this’ term as a. Thus 

T a -= a (go), fs,), 1,” 
m0 -mt 1 = -- (go A3 Isp - Q (go ), t 

(go 4 (go iz Ia, t 

(84) 

The right-hand mem kr of equation (84) is preferable to the left-hand member since it shows 
direct dependence on the important parameters of initial thrust-to-weight and specific impulse. 
The left-hand member masks this dependence by the inclusion of the lift-off mass. 

Performing the above indicated modifications, we now summarize the results of the pre- 
ceding work with the following set of equations as the final form’of equations (13) through (15) 
and (73) through (78). 

+ cos 0 MG -- 
$3 f f*+ A; kos2 e + q y2 + d62+ 42 cos2e) 

(85) 
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I$= I a(goA (go& 4, ] ~~~~~ 0 2;8 -- 
(g,), lap - a (go), t r d( A: r2 + A2 

t 2) cos2e+x; - $2 sin 0 cos 0 
t 

’ = I (go)@ I,, - a (go), t 
a (go), (g0h Ia, ] x3 . . 

+20& tan0 - G 

.T cos e# 9+ 

i,- $ (X24 +h34)+)14=O 

. 
);2+2(X1rfj - Q +X3t#‘tane) +X,=0 

T 

i, + 2 [(A, r cos 0 - A, sinO)~c0s0+X3(~tan0 ;/r,1 + Cl’ 0 

. 
&+A, F c + (~2+~2cos2e) 3 + $ (h,8+A,& 

-- L a(& (go)@ I,, ] [ (~2, cos2 0 + A;) T2COSe uy+q)cos2e +h: 1 = 0 (go)@ I,, -a (go), t 

x'3 -~2(hlfsin20+X2cos2e)+2h3~~ sec20 

X\ tan 0 set 0 
+- 

F 
a fg0A CRo)f3 1,~ ] [ (gob I,, -a (go), t t db: r2+ AZ, kos2e + A: 1 = 0 

@a 

(87) 

038) 

(89) 

(90) 

(91) 

(92) 

The above equations can be further reduced in n-umber by, differentiation of equations (88) 
and (89) followed by insertion of the expressions for x4 and A,. This alternative form is shown 

in Appendix A. 

SECTION VI. CHOICE OF SIGN CONVENTION 

Equations (GS), (69), (71) and (72) indicate that there is a certain amount of freedom in 
choosing the sign convention to be adopted in numerical integration of the equations of motion. 
This choice can be investigated either by consideration of the physical parameters (trigonometric 
functions of the gimbal angles) or the mathematical parameters (Lagrange multifiiers) with equi- 
valent results. We choose the former method. 

We may consider all possible cases by giving the functions cos 6, sin 6, sin y, cos y either 
plus or minus signs in all possible combinations, and listing the results in tabular form. For 
reasons that will become apparent below, we also list the product ~0s 6 ~0s y. 
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Case Number 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

11 

12 

13 
14 

15 

16 

cos 6 

+ 

+ 
+ 
+ 
+ 

+ 

+ 

+ 

sin 6 

+ 

+ 
-t- 
+ 

sin y 

+ 

+ 

cos y 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

cos 6 cos y 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Insertion of the sign conventions 9 through 16 into equations 85 through 92 show that they 
correspond, mathematically, to cases 4, 3, 2, 1, 8, 7, 6, and 5, respectively. Thus we immedi- 
ately reduce the/number of cases to be considered by a factor of two. 

Furthermore, in cases 2, 4, 6, and 8 the sign of the product cos 6 cos y is negative on the 
radial thrust term. If the initial value of h1 were chosen negative then the resultant force would 
be in alignment with the positive radius vector for at least a portion of the powered flight. A few 
numerical experiments were conducted to check this possibility, and it was found that the cor- 
responding trajectories did exist. 

An analagous situation is found in cases 5 and 7. . . For case 5 we can obtain a positive 
inclination by first setting the thrust term on the 8 equation negative (the signs on the thrust 
terms are, of course, arbitrary) and then forcing a negative value of sin 6. Thus, we obtain 
another possible solution. 

Finally, cases 1 and 3 will be considered. Case 1 is the most physically reasonable of 
possible choices. The first of these two cases is equivalent to firing with the planetary rota- 
tion to the north in an outward direction (i.e., in the direction of increasing radius vector). 
Case 3, with tan 6 negative, corresponds exactly, except that we now fire against the plane- 
tary rotation. 

The choice of which of the above cases to be studied will now be discussed. Cases 1 and 
3 are, of course, of the most importance. Case 1 is studied in detail and case 3 was given less 
consideration. In order to check the possible solutions corresponding’ to the other remaining 
cases, case 5 was carried out in equivalent detail to case 1 and case 7 in a manner similar to 
case 3. Cases 2, 4, 6, and 8 were given only a cursory check and the results are not pre- 
sented. 

Another point of consideration before closing this section is symmetry under 8 reflection. 
From physical considerations it is fairly obvious that if the initial latitude is r3u and an orbit 
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of inclination 1 achieved from ascent from this point, the equivalent physical results must be 
obtained if the launch latitude is - et, and the resulting incli&tion is y I. As is well known, 
the free-flight /equations possess this symmetry. We may then’ require that the powered-flight 
equations, including the equations governing the Lagrange multipliers, possess this same sym- 
metry. 

The problem may be approached by replacing 8 by - 8 in equations (85) through (92) and 
observing the results. This procedure shows that our principle holds only if the multipliers 
A,, A,, and X, are symmetric with respect to 8 reflection, while the multipliers X2 and X, are 
antisymmetric with respect to this reflection. This result might have been predicted”since the 
latter two multipliers are those associated with non-planar flight. 

We may now essentially double the amount of data available from our results by the above 
principle. Suppose, for example, that we have numerical data corresponding to the initial condi- 
tions 8 = 0, and a final inclination of 5O. We may then obtain identical results by reversing 
the sign on the inclination and the signs on the Lagrange multipliers X, and X, . 

In the numerical data presented below, the sign convention used in preparation of the data 
will be specified by use of the case numbers given above, i.e., “sign convention for case number 
1:’ ” sign convention for case number 3,” etc. 

One final remark is in order before proceeding to the numerical integration procedure. A 
comment was made above about “forcing” a negative value of sin 6, and the immediate question 
that cornzs to mind is just how this may be done in practice. 

More generally we may consider the problem of arbitrarily fixing the signs of the trigonometric 
functions of the two thrust orientation angles. We consider the signs of the sines to demon- 
strate the involved principles. Equation (68) shows that sin y will be positive or negative 
according to the sign of X, if the radical is always taken as positive. Likewise, for cos 8 posi- 
tive and the radical of equation (71) posftive, the sign of sin 6 will agree with the sign of h,. 

Thus the problem is reduced to fixing the signs of X2 and X,. The procedure for doing this 
is not immediately obvious. It was found, numerically, that Xs and Cl exerted such strong 
dominance over all other terms in equations (89) and (90) that X2 and Xs always have the opposite 
sign of hs and C 1, respectively. The large values of &that were necessary to give even low 
inclinations, as well as the large value of C1 that was chosen, ensured that this sign asymmetry 
was maintained throughout the powered flight. 

In summary, then, reversing the sign of the initial value of Xs reverses the sign on the final 
value of the inclination with no other changes. Reversing the sign of C, changes the direction 
of launch with respect to the lunar rotation. In the latter case other parameters also change, 
because there does not exist aneeast-west symmetry on a rotating sphere. 

VII. NUMERICAL INTEGRATION PROCEDURE 

Since the resulting set of Euler equations, along with the equations of motion, could not be 
solved by analytical methods it was necessary to resort to numerical integration techniques. 

in order to obtain some. feel for the results that can be obtained, we note that at the initial . 
point the variables r,, , .i, , f?,, , i,,, $a, +,, , Xy, ht, Aas, Xt, ht, C, , IBP, and a 
(thrust-t o-weight ratio) must be specified. The first six of these (T , ;, 8, 8, &is) are fixed by 
our choice of launch site. 
or’optimization criterion. 

The final two (Jr, and a) are fixed either by technological feasibility 
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The X’s are further restricted by two considerations. Once X, has been chosen, the lift-off 
angles y,, and 6, then determine h, and A3. Furthermore, one of the multipliers acts only as a 
scaling factor since equations (88) through (92) are homogeneous t 

Thus, we are left with only X1, X4, and X5 as arbitrary initial parameters. 

At the end point there are numerous conditions that it would be convenient to specify. Re- 
stricting our discussion to circular orbits, ** the first such requirement iS that circular energy is 
obtained. Secondly, the requirement that i, = 0 must be invoked to insure circularity (this 
corresponds to a flight path angle of 90 degrees from the vertical in body-fixed coordinates). 
Thirdly, the requirements on the final orbital inclination must be attained. From stability of 
guidance considerations the thrust vector must be aligned with the velocity vector at injection. 
(This puts endpoint requirements on yr and St.) Finally, the altitude should be a predetermined 
variable. 

We are apparently faced with the problem of mapping three initial conditions into six end 
point conditions. One further degree of freedom is available, however, namely the choice of 
cutoff time. This parameter serves very nicely to determine circular energy. 

The problem may now be stated as: 

Given 5, , ia, 8 n, &, $a, y. (or X 3), 6a (or hs ), I,, and Q, determine 

4, A,, A5 and t, 

such that cutoff energy, zero radial velocity, specified inclination, specified altitude, and final 
alignment of the thrust vector with the velocity vector are obtained.*** By elementary consid- 
erations it is not possible to map four initial conditions into six end point conditions. 

In practice, circular energy, zero radial veIocity and desired’.inclinationare always required. 
This leaves one free parameter, and a choice of the most desirable remarning end point to be 
obtained must be made.**** 

It is interesting to note that there is not a one-to-one control correspondence between initial 
and final conditions. That is, one cannot state that h, controls final radial velocity, A, controls 
final gamma, etc. In reality, the situation is much more complex and there is a complicated 
interrelationship between initial conditions and end conditions. The method employed was, first 
of all, to check which initial parameters could iterate which end conditions. It was found that X, 
could iterate final altitude, radial velocity, or final gamma. h, was good for isolating final radial 

* The multiplier chosen to be arbitrary was C, (or X,). As was noted previously, a negative 
C, corresponds to firing with the Iunar rotation and positive C, corresponds to firing against the 
lunar rotation. No orbit could be attained with C, = 0. The value chosen for C 1 was - 10 5 . 

** The problem of non-circular orbits will be discussed in APPENDIX B. 

*** It is very important to realize, at this point, that the angles C$ and0 at ado//($ f, 8, ) ari 
/ired (though unknown). This fact is very important in connection with the necessary end point 
conditions. 

****From this point on we refer to isolating final gamma (= n/2 in all cases) as an equivalence 
to isolating the angle between the thrust and velocity vectors. 
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velocity, less adept at final altitude and very poor for final gamma. Only X5 was used to de- 
termine inclination--and it was used for nothing else. ’ Checks were also made to determine the 
applicability of X, and C, as iteration parameters. A, was found to isolate final gamma and 
nothing else. C1 can be used as an iteration parameter (if another X is frozen) and was found to 
be acceptable (but not good) for isolating final radial velocity and final gamma, but very poor 
for isolating final altitude. 

The iteration parameters were then chosen and a ‘*forced” one-to-one correspondence was 
used. For example, X, was chosen to isolate a final gamma of 90 degrees, A, was chosen to 
force the final radial velocity to be zero, and X, was chosen to determine final inclination. Once 
the desired gamma was obtained in a first order isolation, the computer incremented A,, recon- 
verged X1, etc., until both final gamma and radial velocity matched specified end conditions. 
Then the inclination was attached in a third order isolation. Thus, one-to-one correspondence is 
only a surface artiface and the computer, in reality, searches out a single three-dimensional 
initial point which corresponds to the prespecified final point. This method is generally referred 
to as the “cruddy creeper”. Another method of approach is to attempt a complete run with 
guessed initial multipliers and record the end conditions. One of the multipliers is then modified, 
and the end conditions again recorded. The multipliers are then reset to the initial guesses and 
the above procedure is repeated until all multipliers have 1 been changed and the results noted. 
The machine then performs a multi-dimensional interpolation for the initial conditicos which 
yield the desired end conditions. This procedure was finally chosen in preference to the “cruddy 
creeper” since its convergence time is between one and two orders of magnitude faster. 

It was found that there also exist initial values of the thrust-to-weight ratio which 
produce maximum values for the mass fraction, if the final altitude is specified, and maxi- 
mum final altitudes, if the final value of gamma is specified to be 909 Besides the isolation 
of an “optimum” thrust-to-weight ratio, it was also found that there exist initial values 
of thC lift-off angles, gamma and delta, which maximize. mass ratio for the second sort of 
trajectory. We could thus have trajectories which isolate four end conditions and three initial 
conditions. Such trajectories would require a prohibitively long running time, even on the 
fastest available computers. 

The trajectories which maximize mass fraction via choice of initial thrust-to-weight ratio 
are relatively easy to isolate since the maxima are rather flat and the burning times are short. 
The isolation of the thrust-to-weight ratio which maximizes final altitude (for the case of yf = 
n/2) are extremely difficult to isolate and these trajectories are quite unstable. The isolation 
of initial values of gamma and delta which maximize the mass fraction at cutoff is also difficult 
but is of less practical importance. 

The choice of the time increment used in numerical integration is a very important quantity. 
A previous version of this report (Ref. 3) presented data obtained by using a value of 64 seconds 
for numerical integration. (Th ese data are included here.) This time increment was initially 
chosen by comparison of trajectories run with varying time increments. Unfortunately, the initial 
thrust-to-weight ratio used for the comparative runs was low and false results as to the relative 
accuracies were obtained. The difference in end conditions has since been found to vary strongly 
with high time increments for trajectories which have a high initial thrust-to-weight ratio. This 
is because these trajectories have shorter burning times and thus fewer segments are used during 
the numerical integration than in the low initial thrust-to-weight ratio cases. 

Thus far the problem is simply one of accuracy. The final values of the several variables 
corresponding to the higher thrust-to-weight ratios were found to be enough in error that false 
maxima were introduced into the resultant graphs of mass fraction (ratio of initial mass to final 
mass) as a function of initial thrust-to-weight ratio for those trajectories which align thrust and 
velocity at cutoff. 
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Restricting ourselves to this case, for the moment, trajectories were studied which maxi- 
mized m f /m, as a function of T/W, for various values of the time increment used in numerical 
integrations. FIG ‘4 shows the results of this study. It may be seen that, as the time increment 
approaches zero, the optimum initial lunar thrust-to-weight ratio apparently becomes unbounded. 

This result may be predicted in retrospect. As is well known, the optimal burning program 
to maximize mass fraction (exclusive of atmospheric drag) is impulsive. We might thus expect 
that if the vehicle is launched in the direction of the lunar rotation at an arbitrarily high thrust 
level, we would obtain a maximum mass fraction, since gravity losses have vanished. It is not 
immediately apparent that this argument is applicable since the cases treated assume non- 
horizontal lift-off and it is not possible to launch in the direction of lunar rotation. It should be 
remembered, however, that the equations of motion are derived under the assumption of a point 
vehicle, which is equivalent to assuming vanishing moments of inertia. The turning rate of the 
vehicle is, thus, governed by only the momentum of the point mass, which is negligible at lift-off. 

The above result is, then, the consequence of the assumption of a point vehicle in any area 
where this approximation is invalid. The question arises as to whether the mass fraction may be 
maximized via a choice of initial thrust-to-weightratio if the altitude is prespecified rather than 
alignment of thrust and velocity vectors. Such maxima were found to exist. In this case these 
maxima were essentially independent of the time increment used in integration for values of the 
increment of four seconds or less. 

The actual time increment finally chosen was four seconds. This gave accuracy of at least 
five significant figures by comparison with time increments of one second. The numerical data 
given in. a previous version of this report (Ref. 3) were run at a time increment of 64 seconds and 
are also included. The purpose for this inclusion is to provide a large amount of useful data that 
is sufficiently accurate for preliminary design purposes. A duplication of these data at a lower 
time increment was made only for cases which were considered to be of particular importance. 
Furthermore, the entire set of data which deals with ascent to a 15-kilometer orbit was not in- 
cluded in the previous publication. 

The technological range considered was chosen to give a broad brush outline of what values 
may be of interest rather than a detailed study of a given configuration. The specific impulses 

considered were 300, 350, 400, and .450 sec. The thrust-to-weight ratios chosen were 1, 1.1, 
1.3, 1.5, 2, 3, 4, 5, 6, and 7 (lunar reference).* 

The launch site was arbitrarily chosen to be the lunar equator at the lunar prime meridian 
(c,b,,=e, =O) d h f an t e inal orbital inclination was chosen to be 5 degrees. 

The lift-off angle, y0 , was varied from 0’ to 40” in steps of 10’. The angle 6 was always 
set equal to zero. For the special case of y0 = 6, the initial thrust-to-weight ratio was con- 
sidered for the range between 1 and 2. 

A few cases are given in the next section to illustrate the procedure for obtaining orbits of 
inclination higher than 5’, as well as the effects of non-equatorial launch. 

Below is a resum; of the constants used in the program. These values were the best avail- 
able at inception of this report, but probably can be improved upon due to more recent measure- 
ments of various constants. 

(MC), = 4.899996 x 10” m3 /sec2 
6 (r,,), = 1.738 x 10 m 

(go), = 1.622169 m/sec2 
(goje = 9.81 m/sec2 

APPENDIX C shows a block diagram of the final form of the computer program. 

* To convert from lunar referenced thrust-to-weight to a corresponding value referenced to the 
Earth’s surface it is necessary only to multiply by 

g, /g* = A653587 
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Numerical Integration Step Size, Sec. 

FIGURE 4. PREDICTED OPTIMAL INITIAL THRUST-TO-WEIGHT RATIO 
VS TIME INCREMENT USED IN NUMERICAL INTEGRATION; 
THRUST AND VELOCITY VECTORS ALIGNED AT ORBIT. 
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SECTION VIII. NUMERICAL RESULTS 

In this section, we present the results. of numerical integrations performed on the set of 
simultaneous equations (85) through (92). Th ese results, contained in Tables 1 through 52 will 
be prefaced by a short introduction on the assumptions made, and an explanation of the purpose 
of ea&. Table. 

A few general remarks can be made about the Tables: 

1. The .‘initial value of the longitude, #+, , is always set equal to zero. Since the assumption 
of rotational symmetry was invoked in the derivation of the equations of motion, this in no way 
further restricts the validity of our solutions. 
2. With the exception of Table 34, the initial value of the latitude, $, is always zero. 
.3. The initial Mlue of the thrust orientation angle S is always zero. 
.4. With the exception of Tables 1 through 11, 35, 36, 37, 50, 51, and 52 the final value of the 
thrust orientation angle y is always n/2. (The final value of 6 was usually within 2Oof the 
value of the inclination angle.) 
5. The value of Crwas always set at - 105for inclinations angles in the range 3~/2 < I < n/2 
and + 105 for indinations in the range n/2 < I < 3s/2. 
6. The time increment for numerical integration was 4 seconds for Tables 1 through 21 and 64 
seconds for Tables 22 through 52. 
7. The final value of i is always zero and circular energy is always achieved. (‘i is also zero 
by the conditions of circular energy if yt = n/Z.) 
8. Tables 1 through 37 correspond to the sign convention of case 1 except for the second half 
of Table 33’which corresponds to the sign convention of case 3. Tables 38 through 52 corre- 
spond to the sign convention of case 5 except for the second half of Table 49 which corresponds 
to the sign convention of case 7. It should be noted that analogues of each of Tables 22 through 
37 are given in Tables 38 through 52 except for Table 37. This Table would be identical 
for either sign convention 1 or 5.1 
9. Altitudes are presented in meters, velocities in meter/set., etc. 

We proceed, now, to a more detailed discussion of the individual tables. Those remarks 
referenced directly to Tables 22 through ‘37 apply equally well to the analogous Tables ‘38 
through 52 

Tables 1 through 11 present data for trajectories which ascend to a 15-kilometer orbit under 
the assumption of vertical lift-off. These tables are the result of numerical integration of the 
equations of motion using a time step increment ‘of four seconds. These tables list the fina 
value of gamma at orbit and it may be seen that these values are usually near 90’. Those 
trajectories with initial thrust-to-weight ratio of less than four “hump” during the ascent; i.e., 
the final altitude is not the maximum altitude. 

Table 1 contains thrust-to-weight ratios which maximize the percentage of initial mass 
which achieves orbit for each listed specific impulse. 

Tables 12 through 21 always have thrust and velocity alignment at orbit. For this reason 
the altitudes are not constant, but vary over a range of almost 100 kilometers. (It may be noted 
that, for a given specific impulse, there exists an initial thrust-to-weight ratio which produces 
a given altitude. We could thus specify both a final value of gamma and a final altitude, provided 
the initial thrust-to-weight ratio was not fixed. This is reasonable in that another degree of 
freedom has opened up.) 

* See Section VI for a discussion of sign conventions. 
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This set of tables also provides a basis of comparison for later tables which present data 
from a study of the same vehicles with a larger value of the time increment, used in numerical 
integration. These later tables (discussed below) cover a much wider range of initial conditions 
than is presented in the first 21 tables. 

Tables 22 through 25 present data for initial thrust-to-weight ratios of I, 1.1, 1.3, and 1.5, 
respectively, under the assumption of vertical lift-off. There is a direct correlation between the 
initial thrust-to-weight ratio and the largest lift-off angle that may be used. In the case of verti- 
cal lift-off, the initial thrust-to-weight ratio may, theoretically, be as low as one. On the other 
hand, for an initial lift-off angle of 40° the initial thrust-to-weight ratio was found to have an 
asymptotic limit at about 1..4. For initial thrust-to-weight ratios of less than 2, only vertical 
lift-off was considered because of practical considerations. The reason for inclusion of these 
low values of thrust-to-weight ratios for even vertical lift-off is not immediately apparent. More 
will be said about this in Section X, but for the present it is interesting to note that a maximum 
altitude exists in the vicinity of an initial thrust-to-weight ratio of 1.2. 

Tables 26 through 31 constitute the bulk of the numerical work. Each of these tables has a 
given initial thrust-to-weight ratio, and contains data for varying the specific impulse and initial 
lift-off angle. 

As was noted previously, there is some thrust-to-weight value (for a given specific impulse) 
that produces a maximum altitude. This statement is limited to vertical lift-off, insofar as it 
is investigated here, but is probably more generally applicable. Furthermore, we must bear in 
mind that there is a constraint placed on the final value of y. Under these restrictions, Table 
32 presents initial thrust-to-weight values that produce maximum final altitudes. 

Table 33 is much more specialized than the preceding tables, in that it presents data only 
for the special case of an initial thrust-to-weight ratio of 2, a specific impulse of 300 sec., and 
vertical lift-off. In this table, the vehicle is assumed to lift-off from the equator and ascend to 
circular orbits of various inclinations. It can easily be seen that as we approach the singular 
point of a 90°inclination, the Lagrange multipliers increase at a frightening rate. For this reason 
the inclination values were not studied between 8g” and gl” (the time required to isolate even 
these values was quite high). This table is split in half by a dashed line. The data above the 
dotted line (O” < I, < 8g”) have a Ct value of -. IO”, and those below @lo< /r < 180°) have a 
C1 value of + IOs(corresponding to. sign conventions of cases 1 and 3, respectively). The physi- 
cal parameters corresponding to an inclination of 9O”may be found by interpolation. In the event 
that polar orbits are of importance, it would be easier to rewrite the equations of motion with this 
singularity built into an inclination of little importance, or set up the equations in a non-trigono- 
metric form which avoids singularities. 

Table 34 is a short presentation of data obtained for the same vehicle used in Table 33. In 
this case, the lift-off latitude was varied, and h, was always set equal to zero. 

In Table 35, the final’value of y is not constrained to be 90’. The vehicle under consider- 
ation is assumed to have an initial thrust-to-weight ratio of 5, and a specific impulse of 450 sec. 
The reference case from which this table was constructed was entry number 16 of Table 29. 
The initial lift-off angle was varied, and X: was used to maintain the same altitude found for the 
case of vertical ascent. 

Table 36 shows the data obtained when the final mass fraction was optimized with respect to 
the initial lift-off angle for the same vehicle used in Table 35. No restriction was placed on 
either the final altitude or final value of gamma. Since two end points were free, one of the 
initial multipliers (in addition to Cr) was arbitrary. The multiplier chosen was A:.- Several of 
the trajectories in the middle of this table exhibit the phenemonon of “humping”. Below these 
values, the vehicle “falls” the whole way into orbit, and the “humping” effect vanishes. The 
increase in mass fraction obtained by optimizing the initial value of gamma is about 1;3 per cent. 
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Table 37 optimizes the initial value of gamma to obtain maximum mass fraction in .orbit 
under the restriction that the final altitude was constant. The final value of gamma was, of 
course, unconstrainable since A: was used to isolate final altitude. In each of the two cases 
presented, the increase in mass fraction was about 1 per cent. 

As a final point, we comment on the accuracy of using equation (38) (or (37) for non- 
equatorial launch). It was found that for those trajectories achieving an inclination of 5’, that 
equation (38) introduced an error of less than .()29 Even for the case of a final inclination of 
8g”, the error introduced by this approximation was only 0.29 Since the original data was obtain- 
ed via equation (38), it was not feIt that this small error was significant enough to justify recom- 
puting all trajectories. 



TABLE 1. Optimum Initial Lunar Thrust-to-Weight Ratios 

f& = C& = 0; I, = 5’; rf -‘r. = 15,000 m. 

I EP (T/W), Yf “r/m0 A? x0, A; tf 

300 3.9718 91.034 .54633 ‘1.39727 .0126960 -8805.6 207.23 
350 4.0840 90.811 .59580 1.33974 .0122601 -8804.6 209.49 
400 4.1740 90.650 .63577 1.29741 .0119506 -8803.8 211.09 
450 4.2437 90.517 .66867 1.26597 .0117115 -8803.3 212.47 

L 6 

TABLE 2. Initial Lunar Thus t-to-weight Ratio = 1 

f3, =q$ =0;Ir=5’ ; yo=Oo; rf-ro =15,00Om 

-8792.8 1002.85 
-8787.7 1073.81 
-8783.0 1135.63 
-8778.7 1190.37 



TABLE 3. Initial Lunar Thrust-to-Weight Ratio = 1.1 

e,=+,=O ;l’f=50 ; yo=Oo; rr-ro=15,000m 

300 77.918 .47404 35.99196 .0628207 -8800.2 867.47 
350 76.725 .52170 39.79936 .0674281 -8797.4 920.34 
400 75.752 .56126 43.31592 .0717841 -8795 .O 964.83 
450 74.943 .59461 46.56987 .0758766 -8792 .O 1002.91 

TABLE 4. Initial Lunar Thrust-to-Weight Ratio = 1.3 

8,=+,=0; 1,=5O ; yo=Oo; ff-~o=15,000m 

I BP Yf “If /ml3 hO, A”4 A”5 tt 

300 77.621 .50289 16.15442 .0316771 -8804.4 693.75 
350 76.459 .55180 17.20222 .0325911 -8802.8 729.75 
400 75.518 .59202 18.11438 .0334556 -8801.5 759.14 
450 74.741 .62566 18.91465 .0342560 -8800.4 783.63 



TABLE 5. Initial Lunar Thrust-to-Weight Ratio = 1.5 

8, = cpo = 0 ; I, = 5O ; y. = 0’ ; rf- r. = 15,000 m 

300 78.772' .51793 9.42197 .0207388 -8805.4 583.06 
350 77.727 .56710 ' 9.84948 -0208316 -8804.0 610.86 
400 76.889 .60732 10.21344 .0209669 -8803.0 633.27 
450 76.202 .64077 10.52648 .0211175 -8802.2 651.72 

TABLE 6. Initial Lunat Thrust-to-Weight Ratio = 2 

B. = +. = 0 ; I, = 5O ; rf - to = 15,000 m 

300 82.188 .5i508 4.11135 .0124421 -8805.6 421.74 
350 81.359 .58429 4.19652 .0120772 -8804.5 439.95 
400 80.705 .62427 4.26921 .0118226 -8803.7 454.44 
450 80.176 .65735 4.33149 .01&6363 .-8803.0 466.24 



TABLE 7.. Initial Lunar Tluust-to-weight Ratio = 3 

Bo=q50=0 ; I, ~5' ; ff-ro= 15,000 m 

300 87.384 .54522 1.91021 .0109303 -8805.5 275.02 
350 86.738 .5 9443 1.90315 .0103782 -8804.4 286.14 
400 86.237 .63425 1.90020 .0099785 -8803.7 294.92 
450 85.837 .66706 1.89934 I .0096760 -8803.1 302.02 

TAB,LE 8. Initial ,Lunar Thtust-to-Weight Ratio = ‘4 

t!lo = +. = 0 ; 1, = 5O ; ff - to = 15,000 m 

1 UP Yf m,/mo A:, A: G t f 

300 91.126 .54658 1.38907 .0127624 -8805.6 205.65 
350 90.535 .59593 1.36368 .0120715 -8804.6 213.81 
400 90.082 .63581 1.34631 .0115732 -8803.8 220.24 
450 89.723 .66865 1.33379 .011970 -8803.2 225.43 



TABLE 9. Initial Lunar Thrust-to-Weight Ratio = 5 

8,=+,=0 ; 1, =5’; 5,-fo=15,000 m 

\, 
1 SP Yf “f&j A”l A0 4 \,x”5 tf 

300 94.177 .54517 1.20759 .0154050 -8805.9 165.04 
350 93.590 .59472 1.17344 .0145543 -8804.8 171.57 
400 93.144 .63475 1.14949 .0139+42 -8804.0 176.71 
450 92.794 a66772 1.13181 .0134852 -8803.5 180.85 I 

TABLE 10. Initial Lunar Thrust-to-Weight Ratio = 6 

1!9~=+~=0 ; 1, =5’ ; rf-fo= 15,000 m 

1 UP Yf “f /mo A7 A: % tf 

300 96.856 .54275 1.14167 .0184201 -8806.3 138.26 
350 96.249 .59248 1.10105 .0173855 -8805.1 143.76 
400 95.792 .63270 1.07241 .0166474 -8804.4 148.08 
450 95.434 .66583 1.05117 .0160941 -8803.7 151.57 



.TABLE 11. Initial Lunar Thrust-to-Weight Ratio = 7 

8, = +. = 0 ; 1, = 5O ; ff - to = 15,000 m 

1 

1 8P Yf mf /mcl G A”4 A”5 tf 

300 99.307 .53979 1.12683 .0216784 -8806.7 119.27 
350 98.668 .58978 1.08040 .0204370 -8805.5 124.04 
400 98.188 .63021 1.04766 .0195552 -8804.7 127.79 
450 97.815 .66354 1.02335 .0188964 -8804.1 , 130.80 

TABLE 12. Initial Lunar Thrust-to-Weight Ratio = 1 

eo=+o=o; 1,=50; y. =0yyf=n/2 

300 54154 .42877 97.33660 .1603670 -8786.2 
350 59664 .47291 114.60499 .1829909 -8778.7 
400 64282 .50999 131.65260 .2053368 -8771.8 
450 68191 .54162 148.46797 .2274060 -8765.3 



TABLE 13. Initial Lunar Thrust-to-Weight Ratio = 1.1 

e. =qs()=o ; lfZ5O ; yo=oo;yf=n/2 

r 
1 SP Tf- 10 mt/mo A? A”4 A”5 

300 62931 .45185 62.95928 .1128095 -8796.3 
350 69847 .49814 72.00603 .1246639 -8791.7 
400 75796 .53692 80.44945 .1356819 -8787.7 
450 80968 .56990 88.34058 .1459543 -8784.2 

TABLE 14. Initial Lunar Thrust-to-Weight Ratio = 1.3 

e. =$. =o; 1, =50; Yo=o;yf=n/2 

‘-1 SP tf- 20 mf/mo x0, A”4 1 A”5 

300 62420 .48068 32.51963 .0693737 -8804.2 
350 68994 / .52859 36.13233 .0743249 -8801.8 
400 74597 .56840 39.32520 .0786480 -8799.8 
450 79426 .60199 42.16431 .0824576 -8798.1 



TABLE 15. Initial Lunar Thrust-to-Weight Ratio = 1.5 

8, = +. = 0 ; I, = 50 ; y. = 0; Yf = s/2 

1 SP If- f0 mf/mo A”l A\ A: 

300 55626 .49807 19.70747 .0497318 -8806.7. 
350 61178 .54649 21.58605 .0525388 -8805.0 
400 65863 .58648 23.20294 .0549127 -8803.7 
450 69864 .62003 24.60780 .0569473 -8802.6 

TABLE 16. Initial Lunar Thrust-to-Weight Ratio = 2 

8, qo=o ; I, =50 ; Yf = i/2 

1 OP rf - 10 mf/mo A? hp, A”5 

300 3 9045 .52145 7.99520 .0290282 -8807.6 
350 42606 .57010 8.61537 .0302629 -8806.4 
400 '45567 .60993 9.13358 .0312711 -8805.6 
450 48064 .64309 9.57261 .0321097 -8804.9 



TABLE 17. Initial Lunar Thrust-to-Weight Ratio =.3 

e,=+, =o ; I, = 50; Yf =n;l2 

1 8P ‘f -10 mf /m; A? A: A2 

300 20985 .54028 2.55822 .0157716 -8806.3 
350 22742 .58879 2.72493 .0163452 -8805.4 
400 24186 .62822 2.86142 .0168046 -8804.7 
450 25392 .66085 2.97511 .0171806 -8804.2 

TABLE 18. Initial Lunar Thrust-to-Weight Ratio = 4 

e,+, =o; 1, =50 ; Yf =7;/2 

I 1 l P I zf- To I mf /m. I A01 

12954 .54828 1.20225 .0107577 -8805.2 
13995 .59665 1.27440 .0111352 -8804.4 
14847 .63586 1.33297 .0114358 -8803.8 
15555 .66822 1.38143 .0116807 -8803.3 



TABLE 19. Initial Lunar Thrust-to-Weight Ratio = 5 

eo=~ooo; 1 f = 5O ; yr = n/2 

I 1 SP I Tf’TO I mf /m0 I A”, I x04 I A2 I 

300 8784 .55266 .68292 .0081228 -8804.6 
350 9474 .60094 .72190 .0084052 -8803.8 
400 10036 .64001 .75340 .0086295 -8803.2 
450 10502 .67222 .77935 .0088118 -8802.7 

TABLE 20. Initial Lunar Thrust-to-Weight Ratio = 6 

e. = $. = 0 ; If = 50 ; yf = d2 

I SP If-70 mf /m0 A01 G x0, 

300 6352 .55539 .43458 .0065027 -8804.1 
350 6843 .60361 .45855 .0067285 -8803.3 
400 7243 .64283 .47786 .0069076 -8802.7 
450 7573 .67470 .49373 .0070530 -8802.3 



TABLE 21. Initial Lunar Thrust-to-Weight Ratio = 7 

e,+,=o; I, =50 ;Yf =d2 

1 *P ff - 10 mt/mo A01 A”4 
‘0 

x5 

300 4811 .55726 .29831 .0054087 -8803.8 
350 5178 .60543 .31435 .0055967 -8803.0 
400 5477 .64435 .32724 .0057458 -8802.4 
450 5724 -67638 .33782 .0058667 -8801.9 

TABLE 22. Initial Lunar Thrust-to-Weight Ratio = 1 

e. =+. =o; lf=50; Yo=00;yf=n~2 

1 SP Tf - To mf /in, A: G A”5 

300 54154 .42876 97.337 .1603 -8786.1 
350 59666 .47290 114.604. .1829 -8778.7 
400 64285 .50999 131.652 .2053 -8771.7 
450 68194 .54161 148.467 .2274 -8765.2 4 



TABLE 23. Initial Lunar Thrust-to-Weight Ratio = 1.1 

8, = +. = 0 ; I, = 50 ; y. = 00 ; yf = i/2 

300 62929 .45185 62.958 .1128 -8796.2 
350 69847 .49814 72.005 .1246 -8791.7 
400 75796 .53692 80.449 .1356 -8787.7 
450 80968 .56990 88.339 .1459 -8784.1 

TABLE 24. .Initial Lunar Thrust-to-Weight Ratio = 1.3 

e,=+, =o ; 1, = 50 ; y. =o; yf=n/2 

1 SP If- ro mf /mo Ai A: A: 

300 62420 .48067 32.519 .069373 -8804.2 
350 68994 .52859 36.132 .074324 -8801.7 
400 74596 .56840 39.324 .078647 -8799.7 
450 79427 .60198 42.164 .082457 -8798.0 



r 

TABLE 25. Initial Lunar Thmst-to-Weight ,Ratio = 1.5 

8, = 4, = 0 ; I, = 50 ; y. = 0 ; Yf = n/2 

1 1 8P If- 20 mf /no A: AF; ] . A”5 

t I I I I I I 

300 55625 .49806 19.707 .049730 -8806.7 
350 61182 .54649 21.586 .052539 -8805.0 
400 63867 .58648 23.203 .054913 -8803.6 
450 69869 .62002 24.608 .056948 -8802.5 
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TABLE 26. Initial Lunar Thrust-to-Weight Ratio = 2 

e. = $. = 0 ; if = 50 ; yf = i/2 

39048 
34493 
29599 
24114 
17657 
42611 
37496 
32062 
26019 
18949 
45572 
39975 
34080 
27568 
19986 
48070 
42053 
35761 
28850 
20835 

: 

- 

mf /mo 

.52146 

.52793 

.53339 

.53810 

.54221 

.57010 
-57659 
.58203 
.58670 
.59074 
.60993 
.61633 
.62167 
.62623 
.63017 
.64309 
.64935 
.65455 
.65897 
.66277 

7.994 
9.197 

11.076 
14.484 
22.834 

8.614 
9.916 

11.973 
15.757 
25.287 

9.133 
10.517 
12.724 
16.830 
27.411 

9.572 
11.025 
13.360 
17.746 
29.267 L 

xo4 . 

.02902 -8807.5 

.03314 -10701.6 

.03935 -13400.1 

.05040 -17998.2 

.07723 -28863.9 

.03026 -8806.3 

.03460 -10766.6 

.04121 -13578.0 

.05312 -18425.9 

.08284 -30190.4 

.03127 -8805.4 

.03579 -10819.3 

.04273 -13723.0 

.05537 -18778.3 

.08763 -31318.3 

.03210 -8804.7 

.03679 -10862.8 

.04401 -13843.4 

.05727 -19073.6 

.09177 -32288.7 



Yo 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

TABLE 27. Initial Lunar Thrust-to-Weight Ratio = 3 

e,=$,=o; if=50 ; Yf =d2 

1 / UP rf-rO 

300 ! - 
300 
300 
300 
300 
350 
350 
350 
350 
350 

, 400 
400 
400 
400 
400 
450 
450 
450 
450 
450 

19185 
17471 

T 
c 

15508 
13155 
22544 
20280 
18877 
16719 
14149 
24012 
22084 
20022 
17702 
14953 
25236 
23168 
20973 
18515 
15616 

mt /mo 

.54070 

.54412 

.54714- 

.54988 

.55236 

.58916 

.59257 

.59557 

.59826 

.60069 

.62855 

.63190 

.63483 

.63744 

.63980 

.66115 

.66441 

.66725 

.66977 

.67204 

2-562g .015804 
2.8351 ~ .017161 
3.2058 I .018967 
3.7620 ; .021638 
4.7249 .026229 
2.7260 .016364 
3.0173 .017777 
3.4163 .019667 
4.0183 .022475 
5.0689 .027338 
2.8600 .016814 
3.1667 .018273 
3.5887 .020229 
4.2286 .023148 
5.3524 .028236 
2.9720 .017184 

:3.2912 .018679 
3.7324 .020691 
4.4039 .023702 
5.5899 .028977 

G 
-8806.1 
-9891.4 

-11257.9 
-13183.5 
-16379.0 

-8805.2 
-9922.0 

-11332.2 
-13327.8 
-16664.3 

-8804.6 
-9946.6 

-11391.6 
-13443.8 
-16895.1 

-8804.1 
-9966.7 

-11440.4 
-13539.1 
-17085.6 



Yo 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 : 
10 j 
20 : 
30 
40 

1 8P 

300 12492 
300 11897 
300 11167 
300 10264 
300 9132 
350 13511 
350 12838 
350 12029 
350 11041 
350 9811 
400 14350 
400 13609 
400 12734 
400 11674 
400 10362 
450 15045 
450 14251 
450 13318 
450 12197 
450 10817 

TABLE 28. Initial Lunar Thrust-to-Weight Ratio = ‘4 

e. =+. =o ;i, =50 ; Yf=8/2 

Tf - to mf /mo 

.54730 1.2649 

.54989 1.3542 

.55228 1.4769 

.55447 1.6575 

.55643 1.9489 
'.59594 1.3349 
.59842 1.4317 
.60071 1.5641 
.60280 1.7588 
.60468 2.0735 
.63534 1.3914 
.63770 1.4944 
.63988 1.6348 
.6+187 1.8410 
.64367 2.1750 
.66784 1.4379 
.67009 1.5460 
.67217 1.6931 
.67406 1.9090 
-67576 i 2.2591 

.01104 -8805.5 

.01165 -9575.3 

.01246 -10494.1 

.01362 -11699.6 

.01546 -13501.0 

.01140 -8804.6 

.01204 -9594.1 

.01289 -10538.8 

.01410 -11781.8 

.01602 -13647.2 

.01169 -8804.0 

.01235 -9609.2 

.01322 -10574.5 

.01448 '-11847.5 

.01647 -13764.4 

.01192 -8803.5 

.01260 -9621.6 

.01350 -10603.6 

.01479 -11901.2 

.01684 -13806.4 



TABLE 29. Initial Lunar Thrust-to-Weight Ratio = 5 

8, =c$o =o ; I, = 5”;yr =I$/2 

I- 
- Yo 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

I eP 

300 
300 
300 
300 
300 
350 
350 
350 
350 
350 
400 
400 
400 
400 
400 
450 
450 
450 
450 
450 

‘r-to 

8855 
8545 
8107 
7529 
6793 
9489 
9143 
8666 
8047 
7262 

10009 
9632 
9123 
8469 
7644 

10442 
10039 
9503 
8819 
7960 

mf /m, 

.54797 

.55080 

.55346 

.55589 

.55802 

.59687 

.59953 

.60203 
a60430 
.60630 
.63644 
.63893 
.64127 
.64340 
.64527 
.66904 
.67i39 
.67359 
.67558 
.67734 

.7394 

.7711 

.8218 

.9017 
1.0301 

.7827 

.8174 

.8719 

.9571 
1.0942 

.8172 

.8543 

.9119 
1.0015 
1.1458 

.8453 

.8845 

.9447 
1.0380 
1.1883 

A: % 

.008376 -8805.9 

.008685 -9411.7 

.009127 -10109.8 

.009777 -10988.5 

.010790 -12230.2 

.008678 -8805.0 

.009002 -9425.1 

.009461 -10141.3 

.010134 -11045.0 

.011182 -12325.7 

.008914 -8804.3 

.009251 -9435.9 

.009723 -10166.5 

.010414 -11090.0 

.011492 -12402.1 

.009104 -8803.7 

.009451 -9444.7 

.009935 -10187.0 

.010641 -11126.7 

.011744 -12464.4 



TABLE ‘30. Initial Lunar Thrust-to-Weight Ratio = 6 

0,=$b,=o ; 1,=5O;y* =+/2 

Yo I BP If- to mf /'RO hoI % s 

0 300 7210 .54645 .44334 .006420 -8806.4 
10 300 6997 .54974 .45414 .006584 -8311.0 
20 300 6648 .55288 .48018 .006868 -9877.8 
30 300 6166 .55577 .52620 .007317 -10571.4 
40 300 5550 .55832 .60107 .008015 -11518.3 

0 350 7633 .59555 .47506 .006705 -8805.5 
10 350 7397 .59863 .48693 .006876 -9321.2 
20 350 7025 .60156 .51433 .007167 -9901.6 
30 350 i 6516 .60426 .56244 .007623 -10613.2 
40 350 5871 .60663 .64091 .008335 -11586.9 

0 400 7987 .63530 .50030 .006927 -8804.9 
10 400 7733 .63818 .51309 .007105 -9329.6 
20 400 7341 .64092 .54166 .007401 -9921.0 
30 400 6812 .64343 .59156 .007864 -10647.2 
40 400 I 6143 .64564 .67309 .008587 ' -11642.8 

0 450 8284 .66807 .52078 .007104 -8804.3 
10 450 8014 .67076 .53435 .007287 -9336.5 
20 450 7605 .67332 .56393 .007588 -9936.9 
30 450 7058 .67566 .61534 .008057 -10675.0 
40 450 6369 .67772 .69946 .008790 -11688.6 



TABLE ‘31. Initial Lunar Thrust-to-Weight Ratio = 7 ,’ 

00 = $0 = 0 ; I, = 50 ; y* = n/2 

Yo 

0 
10 
20 
30 
40 
0 

10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

1 “P 

300 
300 
300 
300 
300 
350 
350 
350 
350 
350 
400 
400 
400 
400 
400 
450 
450 
450 
450 
450 

m/m0 

6440 .54395/ 
6264 .54774 
5942 .55140 
5482 .55480 
4892 .55783 
6761 .59330 
6569 .59685 
6230 .60026 
5751 .60343 
5141 .60625 
7024 .63326 
6818 .63658 
6466 .63976 
5972 .64271 
5344 .64533 
7240 .66622 
7023 .66932 
6661 .67227 
6155 .67503 
5513 .67747 

A:, 
.2'4488 
.24755 
.26462 
.29840 
.35322 
.27071 
.27358 
.29099 
.32549 
.38186 
.29105 
.29413 
.31185 
.34699 
.40469 
.30747 
.31077 
.32876 
.36446 
.42329 

.004774 

.004859 

.005072 

.005442 

.006018 

.005066 

.005154 

.005368 

.005736 

.006312 

.005289 

.005381 

.005595 

.005963 

.006541 

.005465 

.005560 

.005775 

.006143 

.006723 

-8807.6 1 
-9242.2 1 
-9720.9 

-10294.1 
-11057.7 
-8806.6 
-9250.6 ; 
-9740.6 1 

-10328.3 
-11112.9 

-8805.8 
-9257.5 
-9756.5 

-10355.9 
-11157.2 

-8804.5 
-9262.4 
-9769.4 

-10378.3 
-11193.4 
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TABLE 32. Maximum Final Altitudes 

e,=c$, =o; If=5”; yo=oo; yr=n/2 

1 

3Yo 
T/W, Tt- 10 mJm0 A? A”4 x.; 

1.1808 64341 .46552 46.961 .09028 -8800.6 
350 1.1785 71340 .51236 53.349 .09878 -8797.1 
400 1.1756 77359 .55126 59.465 .10687 -8794.0 
450 1.1732 82585 .58422 65.137 .11432 -8791.3 L 



'Inclination 
0 

10 
?O 
30 
40 
50 
60 
70 
80 
85 
85.5 
86 
86.5 
87 
87.5 
88 
88..5 
89 
91 
91.5 
92 
92.5 
93 
93.5 
94 
94.5 
95 

100 
110 
120 
130 
i40 
150 
160 
170 
180 

TABLE'33. Variation of'hclination 

*0 =$bo=O; yo =o; yt = n:/2 ; T/W, = 2 ; lap= 300 set 

TforO m*/mo 

39047 .52146 
3905 1 .52145 
39061 .52140 
39077 .52133 
39096 .52124 
39122 .52113 
39151 .52099 
39183 .52085 
39218 .52069 
39238 .52061 
39240 .52060 
39242 .52059 
39244 .52Ci58 
39246 .52057 
39248 .52057 
39250 .52056 
39253 .52055 
39252 .52054 
39259 .52051 
39261 .52050 
39263 .52049 
39265 .52049 
39266 .52048 
39271 .52047 
39269 .52046 
39272 .52045 
39275 .52045 
39291 .52037 
39327 .52021 
39361 .52006 
39390 .51993 
39416 .5 1982 
39436 .51973 
39451 .5 1966 
39465 .51962 
39463 .5196i 

AT 
7.9633 
8.0883 
8.4835 
9.2179 

10.4418 
12.4810 
16.1172 
23.7483 
47.7772 
99.2107 

111.2294 
126.5797 
146.8550 
174.9114 
216.1803 
282.9471 
409.4504 
740.9142 
331.4204 
243.4064 
192.3460 
159.0078 
135.5252 
118.1147 
104.6433 

93.9484 
85.2774 
44.3983 
23.0019 
15.8560 
12.3879 
10.4251 

9.2400 
8.5272 
8.1436 
8.0212 

A0 4 A’: 
.02891 0 
.02936 -17752.3 
.03797 -36656.4 
.03345 -58182.7 
.03788 -84641.1 
.04526 -120417.2 
.05842 -175538.9 
.08605 -280200.0 
.17302 -589750.8 
.35919 -1237639.6 
.40269 -1388474.1 
.45825 -1580976.2 
.53164 -1835102.2 
.63319 -2186562.6 
.78257 -2703334.1 

1.02424 -3539137.5 
1.48213 -5122344.4 
2.68191 -9270169.5 
1.19952 -4145244.2 

.88094 -3043532.6 

.69612 -2404207.7 

.57545 -1986636.1 

.49045 -1692445.1 

.42743 -1474075.4 

.37868 -1305127.8 

.33996 -1170881.4 

.30858 -1061915.8 

.16061 -546091.3 

.08316 -269483.1 

.05730 -170922.7 

.04474 -117949.0 

.03764 -83183.5 

.03335 -57292.2 

.03077 -36139.5 

.02938 -17513.2 

.02894 0 

43 



TABLE 34. Variation of Lift-off Latitude 

40 =o; yo=o; yt -r/2; x,=o;(T/W),=2; 1,,=300sec 

00 ( Tf--To mf /m. x,0 A”4 Incliriation 

0 39048 .52146 7.9634 .02891 0 
30 39076 .52133 9.1998 .03338 30.000000 
60 39148 .52099 15.9552 .05784 60.000000 -. 

TABLE 35. Variation of Initial Gamma for Constant Final Altitude 

rf - r. = 10443 m. ; $o= 13,= 0 ; I,= 5O; (T/W),= 5; lsp= 450 set 

Yo ml jmo Yf x:, 

357 .66836 89.933 k-82329 
358 .66859 89.954 .83368 
359 .66882 89.976 .83936 

0 .66904 90.000 .84535 
1 .66937 90.024 .85164 
2 .66950 90.049 .85828 
3 .66982 90.075 .86525 

AS ho5 
.008908 -8623.7 
.008971 -8683.1 
.009036 -8743.1 
.009104 -8803.7 
:009176 -8865.2 
.009250 -8927.4 
.009328 -8990.6 A 

. 



TABLE ‘36. Maximization of Mass Fraction With Respect to Initial Gamma 

I, = 50 ; A, = .0090090081; (T/W), = 5 ; lap = 450 

Yo Tf-To mf’mo ‘Yr A, 

20" 9503 .67359 90.000 .9447 
30° 8389 .67574 89.657 .9798 
40" 7057 .67766 89.207 1.0323 
5o" 5414 .67931 88.596 1.1114 
60" 3348 .68067 87.714 1.2397 
62" 2844 .68090 87.487 1.2758 
65" 2080 .68122 87.009 1.3406 
706 579 .68168 86.284 1.4941 
74" -860 .68196 85.201 1.6987 
75" -1263 .68201 85.133 1.7719 
79O -3108 .68213 83.780 2.2802 

79.573848 -3409 .68214 83.536 2.4101 
80' -3641 .68213 83.345 2.5245 

x5 CT -ro)max 

-10187.0 Cutoff Value 
-11031.3 Cutoff Value 
-12097.6 Cutoff Value 
-13596.8 Cutoff Value 
-16074.0 Cutoff Va.lue 
-16800.9 3018 
-18145.5 2332 
-21518.5 1166 
-26349.9 354 
-28151.0 Cutoff Value 
-41301.3 Cutoff Value 
-44779.0 Cutoff Value 
-47865.0 Cutoff Value 

TABLE 37. Maximization of Mass Fraction With Respect to Initial Gamma for Constant Final Altitude 

!3,=gs,=0 ; 1,=50 

fT/W, I,, Yo rf- ro m*/m0 Yf A”1 G a A; 

2 300 0 39048 .52146 90" 7.9943 .02902 -8807.5 
2 300 38.299998 39052 .53160 103.854" 190.2039 .65559 -143626.4 
3 350 0 22544 .58916 90" 2.7260 .01636 -8805.2 
3 350 49.0088013 22545 .59719 100.633" 44.2443 .23481 -83828.6 

i% 



TABLE 38. Initial Lunar Thrust-to-Weight Ratio = 1 

I3 o = (iso = 0 ; ‘1, = 50; yo = o”; yf = i/2 

1 
*P ff - 20 m*/m0 A’: A: % 

3oLJ 53927 .42889 96.887 .15952 7400.2 
350 59415 .47303 114.069 .18202 7203.9 
400 64011 .51012. 131.027 .20425 7024.3 
450 67903 .54174 147.756 .22621 6859.1 

TABLE 39. Initial Lunar Thrust-to-Weight Ratio = 1.1 

8, = $bo = 0 ; I, = 50 ; y. = o”; yt = 7772 

1 SP Tt- zo mt/m0 % % % 

300 62700 .45198 62.650 .11215 7761.8 
350 69591 .49827 71.645 .12393 7632.0 
400 75518 .53705 80.039 .13488 7516.7 
450 80671 .57003 87.884 .14509 7413.6 



TABLE 40. Initial Lunar Thrust-to-Weight Ratio = 1.3 

e,=$b, =0;1,=5O; yo =00;y,=R/2 

I 

1 SP rf- To m Jm0 hp A? G 

300 62206 .48081 32.347 .06890 8165.6 
350 68755 .52872 35.936 .07382 8096.8 
400 74336 .56853 39.107 .07811 8037.6 
450 79146 .60212 41.926 .08189 7986.2 

TABLE 41. Initial Lunar Thrust-to-Weight Ratio = 1.5 

8,=~,=0; 1, =5O; y. =oo;yt =i7/2 

I 

1 BP ff - to “tjmO A? A”4 AZ . 

300 55438 .49819 19.598 .04936 8376.0 
350 60970 .54662 21.463 .05214 8333.8 
400 65636 .58661 23.068 :05450 8298.1 
450 69622 .62015 24.463 -05651 8267.6 

4 



TABLE 42. Initial imar Thrust-to-Weight Ratio = 2 

8, =$bo=o; 1,=5”; y*=n/2 

Yo 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

1 SP 

300 
300 
300 
300 
300 
350 
350 
350 
350 
350 
400 
400 
400 
400 
400 
450 
450, 
450 
450 
450 

38910 .52157 7.947 .02878 8606.2 
34358 .52802 9.132 .03281 10450.6 
29469 .53346 10.979 .03888 13067.2 
23990 .53816 14.312 .04963 17501.3 
17546 .54224 22.402 .07549 27871.9 
42476 .57021 8.567 .03002 8589.1 
37347 .57669 9.844 .03425 10494.5 
31919 .58211 11.864 .04070 13215.6 
25883 .58676 15.560 .05228 17879.7 
18829 .59078 24.775 .08086 29070.5 
45402 .61004 9.076 .03099 8576.0 
39814 .61643 10.438 .03542 10529.7 
33927 .62175 12.604 .04220 13335.9 
27423 .62629 16.613 .05447 18190.4 
19858 .63020 26.828 .08545 30086.6 
47889 .64320 9.512 .03182 8562.7 
41882 .64944 10.941 .03640 10558.5 
35600 .65462 13.231 .04345 13435.3 
28697 .65902 17.510 .05632 18450.0 
20701 .66280 28.617 .08940 30958.2 

mf/ho 



TABLE 43. Initial Lunar Thrust-to-Weight Ratio = 3 

eo=+o=o; I~= 50; yr=‘7/2 

Yo 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 * 
10 
20 
30 
40 

0 
10 
20 
30 
40 

1 SP 

300 
300 
300 
300 
300 
350 
350 
350 
350 
350 
400 
400 
400 
400 
400 
450 
450 
450 
450 
450 

Tf’ To “f/m0 

20692 .54077 2.5500 .01567 8735.5 
19106 .54418 2.8164 .01698 9806.4 
17395 .54720 3.1815 .01875 11151.3 
15437 .54992 3.7284 .02135 13041.3 
13088 .55239 4.6723 .02583 16166.8 
22454 .58925 2.7096 .01620 8729.7 
20693 .59264 2.9968 .01759 9831.0 
18794 .59563 3.3896 .01943 11217.7 
16640 .59830 3.9811 .02217 13174.7 
14076 .60072 5.0101 .02690 16434.3 
23914 .62864 2.8424 .01665 8725.1 
21991 .63197 3.1446 .01807 9850.6 
19934 .63489 3.5600 .01998 11270.8 
17618 .63749 4.1883 .02283 13281.8 
14876 .63 983 5.2884 .02778 16650.3 
25132 .66123 2.9534 .01701 8721.3 
23070 .66448 3.2678 .01847 9866.6 
20879 .66730 3.7019 .02044 11314.2 
18426 .66982 4.3611 .02337 13369.5 
15534 .67207 5.5215 .02850 16828.4 

- 



TABLE'44. Initial Lunar Thrust-to-Weight Ratio = 4 
0, =+. =o; I,= 50; Yr =R/2 

Yo 1 8P Tf - IO m*/m, XT A; AZ 

0 300 12446 .54734 1.2578 .01093 8771.0 
10 306 11851 .54992 1.3457 .01153 9535.9 
20 300 11122 .55232 1.4665 .01232 10444.9 
30 300 10221 .55450 1.6443 -01345 11635.1 
40 300 9090 .55646 1.9308 .01525 13409.2 

0 350 13460 .59598 1.3272 .01129 8770.0 
10 350. 12787 7 59846 1.4225 .01191 9552.0 
20 350 11980 .60075 1.5528 .01274 10485.9 
30 350 10993 .60283 1.7444 .01392 11712.4 
40 350 9765 .60471 2.0536 .01580 13548.3 

0 400 14293 .63538 1.3832 .01157 8767.6 
10 400 13554 .63774 1.4845 .01222 9564.9 
20 400 12680 .63992 1.6227 .01307 10518.8 
30 400 11622 .64190 1.8256 .01429 11774.3 
40 400 10313 .64369 2.1536 .01624 13659.9 

0 450 14986 .66788 1.4294 .01180 8765.7 
10 450 14192 .67013 1.5357 .01246 9575.4 
20 450 13261 .67220 1.6804 .01334 10545.6 
30 450 12142 .67409 1.8927 .01460 11824.9 
40 450 .I0765 .67579 2.2365 .01660 13751.2 



TABLE 45. Initial Lunar Thrust-to-Weight Ratio = 5 

e. =+o=o; 1,=50; Yf=R/2 

Yo 1 BP 21-ro m* /‘RO A? 4 4 

0 300 88i8 .54798 .7347 .008289 8789.7 
10 300 8519 .55081 -7658 .008589 9391.4 
20 300 8080 .55347 .8158 .009020 10083.6 
30 300 7502 .55590 .8945 .009657 10953.4 
40 300 6766 .55803 1.0210 .010647 12180.3 

0 350 9471 .59688 .7789 .008603 8786.9 
10 350 9113 .59955 .8117 .008902 9403.3 
20 350 8636 -60204 .8653 .009349 10113.2 
30 350 8017 .60432 .9493 .010006 11007.3 
40 350 7233 .60631 1.0843 .011031 12272.2 

0 400 9990 .63645 .8133 -008837 8785.2 
10 400 9599 .63895 .8483 .009147 9412.8 
20 400 9091 .64129 .9050 .009607 10136.8 
30 400 8437 .64342 .9932 .010282 11050.3 
40 400 7612 .64529 1.1353 .011335 12345.7 

0 450 10407 .66906 .8399 .009009 8783.9 
10 450 10004 .67141 .8783 .009345 9420.6 
20 450 9468 .67360 .9374 .009815 10156.1 
30 450 8785 .67560 1.0293 .010505 11085.4 
40 450 7926 .67735 1.1773 .011581 12405.6 



TABLE ‘46. Initial Lunar Thrust-to-Weight Ratio = 6 

e,=+,= 0 ; I, = 5O; yf = i/2 

Yo 1 SP Tf-fo m/m0 A: x0 4 % 

0 300 7194 .54646 .43990 .006347 8799.6 
10 300 6981 .54975 .45036 .006504 9302.2 
20 300 6632 .55289 .47598 .006781 9865.2 
30 300 6149 .55578 .52144 .007221 10552.9 
40 300' 5533 .55833 .59543 .007906 11490.4 

0 350 7614 .59556 .47140 .006628 8797.1 
10 350 7379 .59864 .48289 .006793 9310.6 
20 350 7006 .60157 .50984 .007076 9886.8 
30 350 6498 .60427 .55733 .007522 10591.9 
40 350 5852 .60664 .63483 .008220 11555.3 

0 400 7967 .63531 .49647 .006847 8795.6 
10 400 7713 .63819 .50885 .007018 9317.9 
20 400 7321 .64093 .53693 .007306 9904.9 
30 400 6792 .64344 .58616 .007759 10624.3 
40 400 6122 .64565 .66664 .008467 11609.0 

0 450 8262 .66807 .51681 .007022 8794.4 
10 450 7992 .67077 .52995 .007198 9324.0 
20 450 7584 .67333 ..55901 .007491 9919.8 
30 450 7037 .67567 .60971 .007949 10650.9 
40 450 6347 .67773 .69271 .008667 I 11653.1 



TABLE 47. Initial Lunar Thrust-to-Weight Ratio = 7 

0, =+o=o; 1,=50; yf=n/2 

Yo 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

0 
10 
20 
30 
40 

1 SP 

300 
300 
300 
300 
300 
350 
350 
350 
350 
350 
400 
4ob 
400 
400 
400 
450 
450 
450 
450 
450 

Tf-To mf /mo 

6429 .54395 .24210 
6253 .54774 .2445 9 
5931 .55140 .26143 
5471 .55480 .29489 
4881 .55783 .34922 
6749 .59331 .26776 
6557 .59685 .27044 
6218 .60026 .28758 
5739 .60343 .32174 
5128 .60625 -37758 
7010 -63327 .28797 
6805 .63658 .29084 
6452 .63976 .30828 
5958 .64271 .34?04 
5331 .64533 .40017 
7225 .66622 .30428 
7009 .66932 .30736 
6647 .67228 .32505 
6140 .67503 .36035 
5499 .67747 .41859 

-- 

-- 
.004709 I: 8805.0 
.004790 9238.1 
.004998 9713.5 
.005361 10282.0 
.005928 11038.3 
.004998 8804.1 
.005082 9245.9 
.005290 9732.5 
.005651 10315.3 
.006218 11092.1 
.005219 8802.3 
.005306 9252.3 
.005514 9747.8 
.005875 10342.0 
.006443 11135.2 
.005394 8802.6 
.005483 9259.0 
.005692 9760.3 
.006053 10363.8 
.006622 11170.5 



TABLE .48.. Maximum Final Altitudes 

8,=t#l,.=0; 1,=5”; yo=00;yf=R/2 

1 SP T/W,, tt-ro mf/mO x01 x0 4 x05 

300 1.1799 64117 .46553 46.862 .08992 7959.0 
350 1.1787 71090 .51253 53.036 .09811 7857.8 
400 1.1757 77094 .55141 59.145 .10619 7763.1 
450 1.1731 82294 .58434 64.821 .11365 7678.2 



Inclination 

0 39084 .52146 7.9634 .02891 0 
10 38499 .52189 7.9020 .02838 17346.5 
20 36900 .52314 7.7333 .02682 35808.2 
30 34405 .52506 7.5051 .02427 56809.4 
40 31259 .52744 7.3057 .02079 82594.9 
50 27810 .53000 7.2914 .01645 117410.4 
60 24469 .53240 7.7751 .01121 171002.0 
70 21654 .53433 9.6067 .00467 272688.4 
80 19797 .53552 17.0322 -.00581 573156.6 
85 19323 .53577 34.1366 -.02002 1200490.6 
85.5 19294 .53579 38.1739 - .02298 1346132.0 
86 19268 .53580 43.3448 -.02670 1532195.5 
86.5 19245 .53581 50.1701 -.03153 1777283.9 
87 19228 .53581 59.6053 -.03809 2115272.7 
87.5 19212 .53581 73.4779 -.04762 2611524.3 
88 19200 .53582 95.8423 - .06279 3410439.2 
88.5 19189 .53582 137.9604 -.09114 4913670.9 
89 19185 .53581 264.8541 -.16394 8796812.9 
91 19196 .53577 114.6169 - .07569 4080896.4 
91.5 19208 .53576 83.9815 - .05499 2987115.2 
92 19223 .53574 66.3109 -.04294 2355459.3 
92.5 19244 .53572 54.8189 - .03499 1943959.2 
93 19264 .53570, 46.7488 - .02934 1654612.6 
93.5 19286 .53568 40.7939 -.02510 1440671.6 
94 19317 .53565 36.1891 -.02174 1274701.9 
94.5 19350 .5356? 32.5525 -.01904 1143284.9 
95 19382 .53559 29.6027 -.01680 1036449.3 

100 19915 .53514 15.9585 - .00490 532394.4 
110 21876 .53361 9.3945 +.00500 262603.8 
120 24769 .53137 7.7242 .01141 166609.5 
130 .28173 .52869 7.3000 .01660 115036.6 
140 31656 .52592 7.3410 .02091 81174.6 
150 34817 .52339 7.5534 .02435 55936.9 
160 37318 .52136 7.7879 .02688 35297.6 
170" 38915 .52006 7.9591 .02842 17109.9 
180' 39463 .51961 8.0212 .02894 0.0 

TABLE.49. Variation ofkdination 

eo=+o=O; ~0 =O;yr=n/2 ; T/W0 =~2;I,,P='300sec 

If -10 mf /mo x0 5 
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Yo 

357 
358 
359 

0 
1 
2 
3 

TABLE 50. Variation of Initial Gamma for Constant Final Altitude 

rt - ro= 16407 m ; g5, = 8, = 0 ; 1 f = 5’ ; (T/W), = 5; 1,,=.450 set 

m*/m0 Yf fi A”4 

.66838 89.933 .82302 .008813 

.66861 89.954 .82834 .008875 

.66884 89.976 .83395 .008940 

.66906 90.000 .83995 .009009 

.66929 90.023 .84608 .009077 

.66951 90.048 .85263 .009151 

.66974 90.074 .85953 .009228 

x05 

8605.6 
8664.6 
8724.2 
8783.9 
8845.5 
8907.4 
8970.1 

TABLE 51. Maximization of Mass Fraction With Respect to ‘Initial Gamma 

If = 50; h 4 =.0090090081; (T/W), = 5; l,g ‘450 set 

I ri- To I mf /mo 

8914.9 .67381 89.574 .8736 10089.5 Cutoff Value 
7884.6 .67592 89.266 .9067 10883.9 Cutoff Value 
6620.8 .67780 88.857 .9563 11885.3 Cutoff Value 
5065.5 .67941 88.299 1.0315 13291.9 Cutoff Value 
3101.0 .68073 87.488 1.1534 15615.1 Cutoff Value 
1891.1 .68127 86.920 1.2493 17558.6 2194.3 
453.2 .68171 86.164 1.3955 20731.4 1100..9 

-3358.5 .68214 83.615 2.2486 42087.4 Cutoff Value 
--3638.7 .68214 83.389 2.3833 45669.0 Cutoff Value 

Yf (T - foAn*r 



TABLE 52. Maximization of Mass Fraction With Respect to Initial Gamma for Constant Final Altitude 

e,=$,=o ; I, = 50 

(T/W), l sp Yo Tf- To mr/mo Yf hO, A”4 A’; 

2 300 0" 38910 .52157 90" 7.947 .028726 8606.2 
2 300 38.365062 38911 .53168 103.87545 184.693 .635524 136385.7 
3 350 0" 22454 .58925 90" 2.709 .016209 8729.7 
3 350 49.175259" 22453 .59725 100.65028 43.677 1231310 82208.2 



SECTION IX..GRAPHiCAL PRESENTATION OF RESULTS 

.To present the data given in Section VIII in a more readily useable form, and to a&l inter- 
polation, a number of graphs are presented. Section X will deal with specific methods of using 
the graphs (as well as the tables of the preceding section) for sample calculations. 

All of the graphs presented below correspond to the sign convention of case number I, unless 
otherwise stated (i.e., FIG 60, 61, 62, 63, 64, and 65). 

FIG 5 and 6 ace a graphical presentation of the most important parameters of Table I. The 
initial thrust-to-we‘ight ratios shown in FIG 5 are those which maximize mass fraction in orbit. 
The only remaining independent parameter, specific impulse, is shown as the abscissa of these 
graphs. 

FIG 7 through I4 are plotted from Tables 2 through 11. In each case the initial lunar thrust- 
to-weight ratio is chosen as the independent variable since most other quantities depend strongly 
on this quantity. The specific impulse values (which exert less influence) are used as earam- 
eters on graphs having multiple curves. 

FIG 15 through 22 are taken from Tables 12 through 21. These graphs are later repeated for 
corresponding data which were calculated using the large numerical integration interval; e.g., 
FIG 15..“corresponds” to FIG 25 and 26. It may be noted that the mass’fraction at orbit con- 
tinues to increase with an increasing initial thrust-to-weight ratio in FIG 15, but reaches a well- 
defined maximum in FIG 26. FIG 15 is correct; the peak shown in FIG 26 is introduced by the 
large time step used in numerical integration. 

FIG 23 through, 33 cover the tabular data for the case of y. = O? FIG 23 is similar to FIG 5, 
but in this case the thrust-to-weight values are chosen to produce maximum altitudes. FIG 24, 
along with FIG 28, 29, 30, 31, 32, and 33 present Lagrange multipliers as functions of specific 
impulse or thrust-to-weight ratios with specific impulse as a parameter. FIG 24 corresponds to 
the same thrust-to-weight assumption as FIG’23. 

FIG 25 and 26 present altitude and mass fraction as functions of initial lunar thrust-to- 
weight ratio with specific impulse as a parameter; they differ only in the range of thrust-to-weight 
ratio that is covered. 

FIG 27 shows a plot of mass fraction vs final altitude with both specific impulse and thrust- 
to-weight ratios as parameters. The data covered are the same as FIG 26. 

FIG 34 through 53 cover the same data as FIG 23 through 33 ‘(but now yo. = 103 20’. 30°, 
or 40°) except that in these cases no data are presented for initial lunar thrust-to-weight ratios 
of less than 2. 

FIG 54 to 59 are plots of mass fraction and final altitude as functions of the initial thrust 
orientation angIe (y, ). In these figures, the thrust-to-weight ratio is different for each graph 

(T/w, > = 2, ‘3, 4, 5, 6, or 7). 
FIG 60 through 65 show the- behavior of r,- ro, mf'/% A:, X:, and X: (respectively)‘as 

functions of final inclination for a vehicle with an initial thrust-to-weight ratio of 2, and a spe- 
cific impulse of 300 sec. The sign conventions of cases 1, 3, 5, and 7 (see Section VI) ar* 
presented in these graphs. The sign convention influences the final altitudes and mass fractions 
very strongly as can be seen from FIG 50 and 51. Although the magnitudes of A;, X:, and X2 
apparently are unbounded as we approach an inclination of 903 there appears to be a discon- 
tinuity at infinity. This could be expected from the fact that C, has a jump discontinuity across 
polar orbit inclination. 
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FIG 66 through 71 do not correspond to any of the. tables of Section VIII, but were prepared 
from a special detailed trajectory printout. These graphs show the time history of various para- 
meters along the trajectory. It is interesting to note that 0 and + (as well as their first and 
second derivatives) are crparallel” throughout the flight. This *‘parallelism” also occurs for the 
gimbal angles y and 8. Note that both y and 6 slightly “overshoot” their final values just prior 
to orbital injection. As can be seen from FIG 71, inclination increases very rapidly during the 
early portion of the flight when the thrust is turning a small velocity vector. 

FIG 72 presents variations in final altitude, mass fraction, and final inclination as a function 
of lift-off latitude. FIG 73 h s ows XT and Xt for the same variation of latitude. The assumptions 
about the vehicle are an initial thrust-to-weight ratio of 2 and a specific impulse of 300 sec. 
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FIGURE 5. FINAL VALUE OF GAMMA, OPTIMAL INITIAL 
LUNAR-TO-WEIGHT RATIO AND MASS FRACTION 
VS SPECIFIC IMPULSE FOR ASCENT TO 15 
KILOMETER ORBIT (at=4 SEC) 
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FIGURE 6. X 1, X 4, and X.5 VS SPECIFIC IMPULSE FOR 
OPTIMAL INITIAL LUNAR THRUST-TO-WEIGHT 
RATIO: ASCENT TO 15 KILOMETER ORBIT 
(At=4 SEC) 
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FIGURE 7. MASS FRACTION VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO FOR ASCENT TO 
15 KILOMETER ORBIT (at=4 SEC) 
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3 4 5 6 7 
Initial Lunar Thrust-to-Weight Ratio,. T/W 0 

FIGURE 9. X 1 VS INITIAL LUNAR THRUST-TO-WEIGHT 
RATIO FOR ASCENT TO 15 KILOMETER ORBIT 
(At=4 ‘SEC) 
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FIGURE 10. X 4 VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO FOR 
ASCENT TO 15 KILOMETER ORBIT (At=‘f SEC) 
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FIGURE 11. X 4 VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO FOR ASCENT TO 15 KILOMETER 
ORBIT (At=4 SEC) 



Initial Lunar Thrust-to-Weight Ratio, T/W, 

FIGURE 12. X4 VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO FOR ASCENT TO 15 KILOMETER 
ORBIT (At=4 SEC) 
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FIGURE 13. FINAL VALUE OF GAMMA VSINITIAL LUNAR THRUST-TO-WPT~UT D.,TT- P- AC,--- 
TO 15 KILOMETERORBIT(At=4 SEC) 



Initial Lunar Thrust-&-Weight Ratio, T/W0 

FIGURE 14. CUTOFF TIME VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO FOR ASCENT TO 
15 KILOMETER ORBIT (At=4 SEC) 
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FIGURE 15. MASS FRACTION VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO (?,,=a, At=4 SEC) 
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FIGURE 16. ALTITUDE VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO (r,’ 0, At=4 SEC) 
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FIGURE 18. X 1 VS INITIAL LUNAR THRUST-TO-WEIGHT 
RATIO ( yo = o, At = 4 SEC) 
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FIGURE 19. X1 VS INITIAL LUNAR THRUST-TO- 
WEIGHT RATIO (y, = o, ht=4 SEC) 
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Initial Lunar Thrust-to-Weight Ratio, T/W 0 

FIGURE 21. X4 VS INITIAL LUNAR THRUST-TO- 
WEIGHT RATIO (y. = o, At=4 SEC) 
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Initial Lunar Thrust-to-Weight Ratio, T/W0 

FIGURE 22. X5 VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO (>, = o, at-4 SEC) 



C 
f 
; L 

: 
: 

I-- 

i--. 

300 350 400 45t 
I sp, SECONDS 

‘f -‘o 

mf - 
m0 

kl 

3 

FIG 23. MASS FRACTION, ALTITUDE, AND INITIAL LUNAR TIiRUST-TO-WEIGHT RATIOS 
VS SPECIFIC IMPULSE FOR MAXIMUM FINAL ALTITUDES (yo=O) 
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FIG 28. A, VS INITAL LUNAR THRUST-TO-WEIGHT RATIO (yo = 0) 
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FIG 31. A, VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO (yo=OO) 
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FIG.32. A, VS INITIAL LUNAR THRUST-TO-WEIGHT RATIO ( r,= 0”) 
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FIG 35. MASS FRACTION VS FINAL ALTITUDE (yo=lO”) 
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FIG 37. x4 VS INITIAL LUNAR THRUST- TO - WEIGHT RATIO, (y. = lOoI 
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FIG 39. FINAL ALTITUDE AND MASS FRACTION VS INITIAL THRUST-TO-WEIGHT RATIO (ye= 20°) 
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FIG 40. MASS FRACTION VS FINAL ALTITUDE ( y. = 20° ) 
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FIG 44 .FINAL ALTlTUDE AND MASS FRACTlON VS INITIAL THRUST-TO-WEIGHT RATIO (y,=30°) 
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FIG’54.FINAL ALTITUDE AND MASS FRACTION VS LIFTOFF ANGLE FOR (T/WI0 = 2 
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FIG 56,FINAL ALTITUDE AND MASS FRACTION VS LIFTOFF ANGLE FOR(T/W& = 4 
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FIG.60. FINAL ALTITUDE VS INCLINATION C(T/w4,=2 AND I,,=300 SEC.1 
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FlG,61- MASS FRACTION VS INCLINATION ~T/W), =2 AND 4,=300 SECj 
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.FIG 62.x, VS INCLINATION m/w), = 2AND I,, = 300 SECONDS] 
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FIG 64. x 6 VS INCLINATION ET/WI0 = 2 AND TIP q 300 SECJ 
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FLIGHT TIME, t, SECONDS 
FIG 66 .ALTITUDE, RADIAL VELOCITY, AND RADIAL ACCELERATION VS FLIGHT TIME bTIW)o = 2 

AND Isp = 300 SEC.] 
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FIG 67. ANGULAR VELOCITY 6 AND 8, VS FLIGHT TIME I( T/W = 2 
AND rs,, = 300 SEC3 
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FIGURE 77. INITIAL VALUES OF LAGRANGIAN MULTIPLIERS VS 
SPECIFIC IMPULSE FOR INITIAL LUNAR THRUST- 
TO-WEIGHT RATIO OF 4.4796 
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FIG 71 . INCLINATION VS FLIGHT TIME [(T/W), = 2 AND I,, = 300 SECONDS] 



FIG 72 . FINAL ALTITUDE, MASS FRACTlON,AND INOLINATION VS LIFTOFF LATITUDE 
[ (T/w)o=2, I~~=300 SEC., X5=0 J 
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SECTIONX. EXAMPLES 

Jir order to illustrate a few of the possible methods of applying the preceding material to 
practical cases, a number of examples will be given. Since this entire report is unclassified, 
the following numbers do not correspond to real vehicles, but the methods of application carry 
over directly. While most cases below are treated graphically, one could use finite difference 
methods to interpolate directly from the tables. 

Example 1. Suppose that we wish to determine the payload that an engine having 15,000 
pounds of thrust and a specific impulse of ‘440 sec. can place in lunar orbit as a function of lift- 
off weight. Assume the lift-off weights to be studied are specified to be 25,000 pounds and 
30,000 pounds (earth reference). Require that thrust and velocity vectors be aligned at orbit. 

The first step is the construction of Table 53: 

TABLE 53 

The last column was obtained by dividing the thrust (T) by the initial weight (IV,). The 
next step is to convert the initial thrust-to-weight ratio-from earth-reference to lunar-reference. 
This may be accomplished by taking the ratios of the earth value of the acceleration of gravity 
to the lunar value and multiplying the fourth column by this ratio. 

Denoting the Moon by the subscript d and the Earth by the subscript s we have 

we 9.81 m/set 2 
‘(go), = 1.622169 m/set 2 

= 6.047’459 

Multiplying the earth-referenced thrust-to-weight by 6.047459, our table now looks as follows: 

TABLE 54 

Now we are in a position to use the material presented above. The bulk of the data given 
assumes launch from the lunar equator at the zero meridian into a pIane of 5O inclination to the 
equator. A further assumption is cal1e.d for about the lift-off angle.- ,The data presented covers 
lift-off angles from vertical to 40° from vertical. While 40° lift-off angles give better performance, 
vertical ascent is probably a more reasonable assumption. With this in mind, we choose vertical 
ascent (y s = 0’). 
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Since the thrust-to-weight is specified, we cannot choose an optimum value. FIG 15 shows 
the mass fraction and FIG 17 shows final altitude as functions of the initial lunar thrust-to-weight 
ratios covering the range. of interest with parametric values of ‘300, 350, 400, and ‘450 under the 
assumption of vertical ascent and alignment of thrust and veIocity vectors at orbit. 

Using this figure, we begin by constructing a vertical line from (T/W, ), = 3.6285, (T/W, ),= 
3.2986, and (T/W, ), = 3’.‘0238. The following table is obtained: 

TABLE 55 

U-/W, 1, 

3.6285 
3.6285 
3.6285 
3.6285 
---- 

3.2986 
3.2986 

3.2986 
3.2986 
----. 

3.0238 
3.0238 
3.0238 
3.0238 

-. 

- 

1 
3P 

450 
‘400 
350 
300 

--- 

450 
400 

350 
300 
--- 

450 
400 
350 
300 

mf/m0 

.6648 

.6325 

.5930 
-5449 
--- 

.6625 

.6320 

.5905 

.5420 
---- 

.6600 

.6278 

.5880 

.5390 

- 

2 
1 

rf- 10 

18.2 
17.4 
16.4 
15.1 

-- - 

21.4 
20.5 

19.3 
17.7 

--- 

25.1 
23.9 
22.5 
20.7 

We may now plot m f /m. and rf - r. vs. lsp with parametric values of (T/W, ) = 3.6285, 
3.2986, 3.0238.‘ This has been done in FIG 74. 

In order to obtain our final data, we now simply construct a vertical line from the specific 
impulse of interest, namely ‘440. Doing this we find: 

TABLE 56 

3.6285 440 
3.2986 440 
3.0238 440 

mf/m0 

.6590 

.6568 

.6543 

Tf - To 

r 18.0 
21.2 
24.9 

Inserting the data of Table 56 into Table 54, our accumulated data are 

TABLE 57 
7 

1 SP wo T U-A'0 >ce U/W, 1, mf/mO rf- TO 

440 25,000 15,000 .60000 3.6285 .6590 18.0 
‘440 27,500 15,000 .54545 3.2986 .6568 21.2 
'440 30,000 15,000 .50000 3.0238 .6543 24.9 
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FIGURE 74. ALTITUDE AND MASS FRACTION VS SPECIFIC IMPULSE 
FOR INITIAL LUNAR THRUST -TO-WEIGHT RATIOS 
OF 3.0238, 3.2986. and 3.6285 
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The payload may now be found (in earth pounds) by multiplying the initial weight, W, , by the 
mass fraction placed in orbit m f /m o . Doing this, we find the following: 

TABLE 58 

1 WO T 
(Gc.) (pounds) (pounds) 

VA+‘0 >e (T/w0 1, mf ho ff - zo Payload 
(Earth) (Moon) (kilometers) (pounds) 

‘440 25,000 15,000 .60000 3.6286 -6590 18.0 16,480 
‘440 27,500. 15,000 .54545 3.2986 .6568 21.2 18,060 
440 30,000 15,000 .50000 3.0238 .6543 24.9 19,630 

The last column of Table 58 gives the payload, in pounds, that ,can be delivered to the 
altitude listed in the next-to-last column. 

Although this completes the solution, there is one other datum that is of interest. The 
characteristic velocity, U, may easily be derived from the mass fraction m f /m o . This quantity 
is defined as 

u = go I, In R 

where R is the mass ratio [i.e., the reciprocal l/(m f/m o ) = m f /m o I . We may then write 

u = go I,, In 2 = (9.81X440) In = 4316.4 In [(mf>mo)] 

Inserting values of mf /m, from Table 58, we may calculate u as follows: 
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The final table, including u is 

TABLE 59 

TABLE 60 

1 WO T 
(:zc) (pounds) (pounds) 

(T/W, )s (T/W,), mt/mo rt- TO Payload u 
(kilometers) (pounds) (meters/set) 

440 25,000 15,000 .60000 3.6285 .6590 18.0 16,480 1799 
440 27,500 15,000 .54545 3.2986 .6568 21.2 18,060 1816 
440 30,000 15,000 .50000 3.0238 .6543 24.9 19,630 1830 



Table 60 is reproduced using the approximate data of FIG 26 for purposes of comparison. 
It is shown below as Table 61. 

TABLE 61 

I W T 
(SE) (pouids) (pounds) 

(T/w,), (T/w,), ml/m0 If - r Payload u 
(kilomet%s) (pounds) (meters/set) 

440 25,000 15,000 ,600oO 3.6285 .6605 17.6 16,513 1790 
‘440 27,500 15,000 ,54545 3.2986 .6587 21.1 18,114 1802 
‘440 ~30,000 15,000 .50000 3.0238 .6554 24.9 19,662 1824 

L 

Example 2. A second case which illustrates another interesting point of the theory is to 
assume a specific impulse of 395 seconds, and a thrust of 20,000 pounds. Let us consider 
lift-off weights of 27,000 pounds and 33,000 pounds. ‘Assume that an orbital altitude of 15 
kilometers is specified. 

As before, we construct the following table 

TABLE 62 

I 
BP WO T U/W,), (T/K,), 

395 27,000 20,000 .74074 4.4796 
395 30,000 20,000 .66667 4.0317 
395 33,000 20,000 .60606 3.6651 

Constructing vertical lin es from (T/W, ), = 4.‘4796, .4.0317, and 3.6651 on FIG 7 we read 
the following values: 

TABLE 63 

V/W,), 

4.4796 
4.4796 
4.4796 
4:4796 
---- 

‘4.0317 
.4.0317 
‘4.0317 
4.0317 
---- 
3.6651 
3.6651 
3.6651 
3.6651 

I 
SP 

(seconds: 

450 
400 
350 
300 

----- 

‘450 
400 
350 
300 

----- 
450 
‘400 
350 
300 

rnrlmo 

LGT . 
1 .6360 

.5958 
I.5460 
r--- 

.6687 
’ .6360 

.5958 

.5462 
---- 
.6684 
.6357 
.5955 
.5460 
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Interestingly enough, all values are so near the optimum thrust-to-weight value--an extremely 
flat region--that it is very difficult to resolve the three mass fraction curves. We thus study the 
thrust-to-weight value of 4;4796. 

FIG 75 shows a plot of mf./mo vs lap for (T/W, ), = .4;4796. From a vertical line at I = 395 
sec. we read 

9 

m,'/% = .6328 

Carrying through this one case (the other two values of thrust-to-weight may be carried 
through by the reader, if desired) we now find 

TABLE 64 

1 WO T 
(seczds) (pounds) (pounds) 

(T/w,& U/w,), 7$/m, .Payload 21 
(lbs.) (ai/sec.) 

395 27,000 20,000 .74074 ‘4.4796 .6328 17,090 1772 

where u was calculated from 

u = go l,,ln = (9.81) (395) In & = [ 1 
3874.95 In (1.580) = (3874.95) (i4574) = 1772 m/set. 

It should be noted that this u, as in example 1, includes all gravity losses, plane change 
maneuvers, etc. 

Example 3. Suppose next that we have the problem of determining the payload capability 
for final orbital altitude of 15 kilometers and characteristic velocity for a moon lift-off using 
I = 315 sec. Let the engine thrust remain unspecified, for the moment, but consider lift-off 
{lights of 16,000 pounds, 18,500 pounds, and 21,000 pounds. 

Since we’ are essentially designing an engine around a specific impulse, we may as well 
choose an optimum thrust-to-weight for each of the above weights. FIG 5 of Section IX gives 
the data needed. This graph shows optimum thrust-to-weight ratios, final value of gamma, and 
mass fractions as a function of specific impulse for vertical ascent. These values may be read 
directly by constructing a vertical line from a specific impulse value of 315 sec. 

Applying this procedure to FIG 5, we can directly read the following data: 

(T/W,), = 4.023 (Optimum) 

(mf'/mo) = .5630 

The (optimum) lunar thrust-to-weight ratio may now be converted to an earth-referenced 
value by dividing (rather than multiplying) by the factor (go )a’/(g, ), = 6.047459. (The lunar 
thrust-to-weight ratio must always be larger than the earth thrust-to-weight ratio). 

Doing this we find 
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FIGURE 75. MASS FRACTION VS SPECIFIC IMPULSE FOR INITIAL 
LUNAR THRUST,-TO-WEIGHT RATIO OF 4.4796 - 
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The engine thrust may now be found by multiplying the initial thrust-to-weight value by the 
lift-off weight. Thus we have 

TABLE 65 

wo (T/W,), T 
(pounds) (pounds) 

16,000 .6652 10,640 
18,500 .6652 12,310 
21,000 .6652 13,970 

The payload may now be found by multiplying the mass fraction (the same in each case, 
and equal to .5630) by the lift-off weight. Doing this gives 

TABLE 66 

1 WO 1 Payload 1 1 (pounds) 

Since we have one mass fraction for all lift-off weights, we have only one characteristic ve- 
locity which is 

u = g, ISpIn [ l’/(mr /m, >I =,(9.81)(315) In [l’/.5630] = 1775 m/set. 

Example 4. Consider the problem of delivering a payload to a prespecified altitude with 
thrust and velocity vectors aligned at orbit. Let us assume a specific impulse of ‘375 sec. and 
an altitude of 30 km. The initial thrust-to-weight ratio is necessarily unspecified since we have 
fixed the final altitude and final value of gamma. 

We begin by construction of a horizontal line at an altitude of 30 km on FIG 16. This line 
then cuts the various altitude curves which correspond to various specific impulses at a definite 
thrust-to-weight ratio. The mass fractions for these thrust-to-weight ratios, and the same speci- 
fic impulse values, may then be read as usual from FIG 15. We obtain the following data: 

TABLE 67 

2.37 
2.52 
2.63 
2.71 

FIG 76 shows a plot of initial lunar thrust-to-weight ratio and mass fraction vs specific 
impulse for a final altitude of 30 km. 
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FIGURE 76. INITIAL LUNAR THRUST -TO-WEIGHT RATIO AND 
MASS FRACTION VS SPECIFIC IMPULSE FOR A 
FINAL ALTITUDE OF 30 KILOMETERS 
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The information we desire may now be obtained by constructing a vertical line from a speci- 
fic impulse value of 375 sec., and reading the mass fraction and initial thrust-to-weight ratio 
from the vertical scales. This procedure yields 

(T/W, ) = 2.58 

mf /mO = -60.42 

This result shows that any vehicle with an initial thrust-to-weight ratio of 2.58, and a 
specific impulse of ‘375 sec., will place a mass fraction of .6042 into an orbit of 30 km.altitude. 

If the initial engine thrust was specified to be, say, 10,000 pounds, then 

(W,) = ?!gL= 3875 lunar pounds 
. 

The corresponding earth weight is 

(WO ) Q = 23,‘430 earth pounds 

The payload can now be found, in earth pounds as 

Payload = (W, )e (mf/m,,) = (23;430) (.6042) = 14,160 pounds 

Example 5. Example 3 considered the problem of designing an engine of prespecified 
specific impulse to place a maximum percentage of a given lift-off weight into orbit. Suppose, 
no*, that an engine thrust and specific impulse are given, and we wish to pIace a maximum 
payload into lunar orbit by variation of the lift-off weight. Suppose, finally, that thrust and 
velocity vectors must be aligned at orbit. 

This problem, at first sight, appears to be equivalent to Example 3. Further consideration 
shows that. a basic distinction exists. The reasoning is as follows: If we fix the specific 
impulse and thrust, and there is a certain lift-off weight that produces the optimum thrust-to- 
weight ratio and maximizes the mass fraction placed in orbit; if we load the vehicle more heavily 

at lift-off, then the final mass fraction decreases, but to find the payload, we multiply the mass 
fraction by the lift-off weight. Although the mass fraction is decreas’ing, the product of mass 
fraction and lift-off weight (which is increasing) may be either increasing, decreasing, or even 
constant as initial thrust-to-weight ratio varies. 

We propose to investigate this for a specific example. Suppose that the thrust is fixed at 
15,000 pounds, and the. specific impulse is chosen to be 350 sec. (this value can be read di- 
rectly from the tables and will serve for purposes of illustration). 

Let us choose our initial values of the lift-off weight, in lunar pounds, such that the initial 
thrust-to-weight ratios are covered in the tables of Section VIII. The following table is obtained: 

TABLE 68 
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1 SP 

350 
350 
350 
350 
350 
350 
350 
350 
350 
350 

T (Wo ), 
(pounds) (pounds) 
‘15,000 15,000 
15,000 13,636 
15,000 11,538 
15,000 10,000 
15,000 7,500 
15,000 5,000 
15,000 3,750 
15,000 3,000 
15,000 2,500 
15,000 2,143 

T43), 
-- 

1.0 
1.1 
1.3 
I.5 

to” 
4.0 

2:: 
7.0 



The mass fractions may now be read directly from Tables 12 through 21 of Section VIII by 
choosing the entries with I., = 350. This yields 

NY >, 
(pounds) 

<r/w, ), q/m0 

15,000 1.0 :4729 7094 
13,636 1.1 :4981 6792 
11,538 1:3 .5286 6099 
10,000 1.5 a65 5465 

7,500 2.0 .5701 '4276 
5,000 3.0 .5888 2944 
3,750 4.0 .5967 2238 
3,000 5.0 .6009 1803 
2,500 6.0 .6036 1509 
2.1'43 7.0 .6054 1297 

TABLE 69 

where the last column was found from taking the indicated product. This column shows that the 
payload is continually increasing with decreasing thrust-to-weight ratio, and terminates in an 
end point maximum at (T/W,), - 1. 

The implication of the above Table is that a given engine should always be loaded until 
the thrust-to-weight is one to achieve maximum payload. This is a different problem than 
achieving maximum mass fraction.* 

The question of the usefulness of the “optimum” initial lunar thrust-to-weight ratios now 
arises, and we continue our investigation along slightly different lines. Since there exists no 
optimum for this case, we proceed by choosing an initial thrust-to-weight ratio of 7 for com- 
parative purposes. 

The problem may be approached by considering that the payload was prespecified at 7094 
lunar pounds. Using the above engine, we would then find a necessary initial lunar thrust-to- 
weight ratio of 1. 

But now consider what happens if the above requirement on choice of initial thrust is re- 
laxed, and we are gble to choose another engine of arbitrary thrust and the same specific 
impulse. The payload must still be 7094 pounds. 

Table ‘49 shows that for a specific impulse of 350 sec. the mass fraction corresponding to 
an initial thrust-to-weight ratio of 7 is .6054. The lift-off weight must then be- 

7094 
(W,), .= (Wf), (2)= (m,‘yki = - = 11,718 pounds 

.6054 

T I (T/W,), (Wo), = (7) (11,718) =- 82,026 pounds 

So far we have merely attained the same payload using two different engines. Now let us 
consider the propellant expenditure used in each case. For the 15,000 pound thrust case, we have 

(Wprop)l = (w,), - <wf), = 15,000 - 7,094 = 7,906 pounds 

* The reader must bear in mind that the earlier remarks about maximization of payload by tra- 
jectory shaping are not modified by this discussion. 
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While for the 82,026 pound thrust case 

wpr& = w, ), 4Wf 1, = 11,718 - 7,094 = ‘4,624 pounds 

The difference in propellant expenditures is 

(%rop)l - %mFA = 3282 pounds 

This figure, converted to earth pounds, is 

%w ) 1 - (wprJ2 = 19,848 (earth) pounds 

This difference is the price that must be paid, in this particular example, for a poor choice 
of engine. Since all propellant used for ascent from the lunar surface must first be propelled to 
escape from the earth and braked onto the Moon, the cost is even higher than this example illus- 
trates. 

:The above example illustrates quite markedly the difference between various maxima. For 
the first thrust level considered, the payload placed in lunar orbit was a maximum; the second 
thrust level placed the same payload in orbit with a better thrust (referred to mission viewpoint). 
Similar results are obtained for a comparison between the optimal thrust-to-weight ratio in com- 
parison to a thrust-to-weight ratio of unity for the case of ascent to a prespecified altitude. 

It might be objected that the higher thrust engine would weigh a good deal more, and thus 
offset much of our gain. Consider that both engines have a thrust-to-engine-weight of 25:l. 
In practice, we can do much better on the higher thrust engines (aside from clustering), but dis- 
regard this to obtain an upper bound. 

Thus, in the first case we have an (earth referenced) engine weight of 

W 15,000 
aglne = - = 600 pounds 

25 

while in the second case 

W 82 026 
engine E - = 3281 pounds 

25 

Thus, the upper bound of weight gain due to our engine is 2681 pounds while the propellant 
that has been saved is about an order of magnitude greater. 

Example 6. The above cases have been determined from graphical data or read directly from 
the prepared tables. .It will often happen that these methods do not yield sufficiently accurate 
results or the required data falls outside th-e scope of the material presented. 

We shall illustrate the two preceding situations as follows: Suppose that an improved value 
of the final results of Example 2 are required. The initial thrust-to-weight ratio is 4;4796, and 
the specific impulse is 395 sec. The initial problem is to obtain initial values of the various 
Lagrange multipliers which correspond to these initial conditions. 

FIG 9, 11, and 12 show Ai, A$ and X9 (respectively) as functions of initial thrust-to-weight 
ratio. Constructing a vertical line on each of these graphs from a thrust-to-weight ratio of ‘4.4796, 
the following data are found: 
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TABLE 70 

FIG 77 shows a cross plot of these data as a function of specific impulse. A vertical line 
from the I, value of 395 sec. now yields the values 

A’: =.I.28 

A: = .01209 

% = -8803.9 

which can be used along with the values I ep = 395 and T/W0 = 4.8380 as input data to a com- 
puter (as well as X2 = h: = 0 and C, = - 10’ ). 

Another problem of interest is to vary the inputs to obtain higher values of the inclination 
than 5”. For instance, we might wish to launch a vehicle into an orbit of 40° inclination. The 
guessing procedure might proceed as follows: Table 33 and the corresponding entry of Table 26 
show that, for the vehicle used, X(: increased by 

(A; )&p 
(X0, ) 50 

= 10.‘44= 1.31 
7.99 

To obtain a 40’ inclination orbit we could make a first guess at hy as 

(A? )400 = (1.3l)(hY >so 

with similar scalings for the other multipliers. 

Similarly, if we wish to vary the lift-off latitude from 0’ to boo, Table 34 gives a scaling 
factor of 

(A? )600 15.955 
cx”, = -- 

7.963 - 2’o 

Thus, we could make a first guess at latitude variation of X(; as 

etc. 

An alternative procedure would be to converge the initial guesses (as was done above) and 
then iterate in small steps for final inclinations; for example, iterate for loo, 20°, 30°, and .40” 
with the converged initial values for each case fed in an initial data for the following case. 
Similar procedures can be used to extend the ranges of lift-off latitude, thrust-to-weight ratios, 
specific impulses, etc. 
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The above guessing game probably appears quite crude to anyone who has not attempted 
an actual isolation of the initial values of the Lagrange multipliers for a case of interest. 
Those who have worked in this area will find it more acceptable. 

SECTION XI. CONCLUSIONS 

The preceding material has covered, of necessity, a rather limited range of problems. This 
restriction is due to the requirement of obtaining all solutions numerically rather than analyti- 
cally. The material presented will, hopefully, aid in initial estimates of the various multipliers 
necessary to obtain other cases of interest. The restriction of constant thrust is contrary to 
most material dealing with variational trajectory shaping, but is more acceptable to present day 
state-of-the-art considerations. 

The necessary end-point conditions were stated symbolically and pursued no further since 
various engineering constraints usually leave no free end point. However, as was demonstrated 
in the numerical results, it is possible to maximize the mass fraction placed into orbit (for the 
case of prespecified orbital alti’tude) or maximize final altitude (if an angle of attack is specified 
at cutoff) by choice of the initial lunar thrust-to-weight ratio. 

The orbit of maximum mass fraction is of interest from both academic and engineering con- 
siderations. This study was originally undertaken to verify the existence of this orbit. The 
problem is subtler than previously stated (Refi3) in that a false maximum is predicted if the final 
angle of attack is specified to be zero; the predicted optima, however, depends upon the numerit 
c.al integration step size. On the other hand, prespecification of the altitude that must be 
achieved at orbit predicts a thrust-to-weight ratio that maximizes the mass fraction injected into 
orbit independently of the numerical integration step size; 

The orbit of maximum altitude occurs for low values of the initial thrust-to-weight ratio if 
the angle of attack is specified to be zero at cutoff. These trajectories are qtiite difficult to 
isolate due to the long burning times and instability with respect to the initial values of the 
multiplier& For thrust-to-weight ratios of less than four (or thereabouts), the altitudes for this 
type of trajectory become prohibitively low. 

The cases which investigate an optimal value of the liftoff angle gamma produce very low 
orbits for a very small increase in mass fraction. Attempts to optimize mass fraction with re- 

. . . spect to the lrutlal value of the angle delta produced extremely unstable trajectories. 
The first two sets of tables are more accurate than the following data since the integration 

stepsize is smaller. It is interesting to note that the later tables are internally consistent. 
A final point with respect to the choice of initial thrust-to-weight ratio is that maximum 

mass fraction does not correspond to maximum payload (see example 5, Section X). The thrust- 
to-weight ratios that are labeled “optimum” refer to the overall mission viewpoint and not to 
the Iocal viewpoint. 

The problem of a. choice of sign convention was numerically investigated for four cases; 
, two of these four were treated in detail. The most important of these four is the sign convention 

of case number one (see Section VI). This particular sign convention is most important from an 
engineering viewpoint. 
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APPENDIX A 

DERIVATION OF SECOND ORDER EULER EQUATIONS 

The system of five first-order differential equations for A1 , Xz , X3 , X4, X5 may be converted 
in a system of two second-order equations (for hr and &J and one first-order differential equa- 
tion for X3 by either of two methods. 

The first of these methods involves neglecting the kinematical substitutions for ;, 6, 4 and 
writing 

F=X, ;-A 
C 

MC 
Cm0 -mt) 

cos 6 cos y + - - r2 
r (B’+ cj? cos2 6) 1 

+A, ii- c T 2;6 
(m, -mt)r 

sin 6+ - 
r 

+ ~2sinBc0s8 
3 

T 2; cj 
-. 

(mo-112t)rcoS e cos 6 sin y - 2 B C$ tan e + 71 

The equations for h 1, A 2, A 3 are now given by the second-order Euler equation 

Note that 

Thus, equation (AI-2) becomes 

Note that 

Thus, the Euler equation for h3 becomes 

or 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

(A-6) 
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A second method of obtaining the second-order equations for & apd b2 is. tq.differen- 
tiate equations (88) and (89) with respect to time, and eliminate X,, X,, X,, 2, 8, $I from the 
resulting equations by the use of equations (90), (91), (92), (SS), (86) and (87). 

By either of these methods we find the following: 

+ 2c14 a (go A (go A33 -- 
-i (go)@ lap - 

I,, A; + A”, co28 
r a(g,j, t 1~2~0s e [I&v 2 1 T +.Az, kos2t)+h; 3 

= 0 (A-7) 

l . 

X2 +2 (iI rB - *)+A, [j%$ + $+J2 (4 sin2e-I)-2B2-j 

-2X, [;4+2rdi,in8cose] +2X,dtane(B’tanf3- G/r) 

-2C, 4 tanf3-t. a (go), (g0)e I,, X’, tan e set e 
[(go), lap-a (go), tl:ff II d/(AZ 2 1r +A;) cos2e+hF 1 = 0 w3) 

i,+2 Coi,rco~e-~~~ine)~c0se+h~(~tane- &)I+- cl=0 (A-9) 

The set of equations listed above may be used as an alternative set to equations (88) - (92) 
in determining X1, X2, X a (the only X’s that appear in the equations of motiorr). The. initial 
value problem is no simpler in this case since we now must guess values of Ai, X 1, X2, X2 ,X3,C1 
to begin integration. 
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APPENDIX B 

FREE-FLIGHT TRANSFER 

Integration of the equations of motion under the assumption of zero thrust will be carried 
out in this Appendix. Although this assumption is contrary to the preceding development, it may 
often be desirable to assume that cutoff occurs at some condition other than a circular orbit. We 
might, for example, bum to .parabolic velocity via a circular orbit or burn until an elliptical orbit 
of prespecified parameters is obtained. The following equations will aid in the choice of various 
cutoff conditions for such problems. 

A number of the following equations are, in reality, nothing more than the Kepler equations 
in three dimensions, referenced to the equatorial plane. The standard techniques for integration 
of the two-body equations carry over almost directly. For this reason, no detailed developments 
will be included. 

Under the assumption of zero thrust, the equations of motion may be written: 

;=- MG 
t2 + T (i2+$cos2 e) (B-1) 

4” sin e cos e (B-2) 

. . 
+= 26$ tan e -z;i (B-3) 

Multiplying (B-3) by ~2 co.52 ,g an exact differentia1 results and upon integration we find 

r2cos2 e&l, (B-4) 

where I, (an angular momentum) is a constant of integration. 

Solying equation (B-4) for J2, substituting it into equation (B-2) and multiplying the result 
by 2~4 0 another exact differential results. Upon integration of this expression we find that 

(B-5) 

where I, is the total angular momentum per unit mass. 

Solving equation (B-5) for 6’ and substituting it in equation (B-l), along with the expression 
for G2 derived above, we find 

. . r=- MG 1; 
-,3-+ 7 (B-6) 
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Multiplying this equation by P and integrating yields 

where E is the total energy per unit mass. 

The final integrations may now be undert?ken. From equation (a-4) we can write 

r2 code dq5 = dt 
4 

d and from this form the operator x as 

d 11 d -= 
di 12cos2e ZjT 

Writing equation (B-2) as 

$ & [3 $ (ed + i2 sin e cos e = 0 

(33-7) 

03-8) 

(B-9) 

(B-10) 

and substituting for C$ and -$- we find 

1: 
T4 cos4 e sin e cos e = 0 

(B-l 1) 
Noting that 

1 de d tan 8 
cos28qT= d+ 

eqLs tion (B-l 1) becomes 

d2 (tan 8) 

d+2 
+ tan e = 0 

(B-12) 

(B-13) 

which immediately yields 

tan 8 = A sin (4 + +I ) (B-14) 

where +r is an integration constant which determines the position of the vehicle in orbit. The 
amplitude constant A may be readily evaluated at the cutoff point as 

A=hj =tan I (B-15) 

The other constant of integration, #r, may be determined by the use of equation (40). 
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.-__..- ---- __ _ ..~ ~.. 

Solving equi(B-7) for 

dt = dT 
L 

E+ = .-k 
r t2 

(B-16) 

and equating dt to equation (B-8) we find 

dt 

2E+E- ’ 
= 22 COG e d I$5 

-3 4 
(B-17) 

T 

The 8 term appearing in the last equation may now be eliminated by equation (B-1'4) yielding 

dr rzdc$ r2d 
2E + E _ s = I, (l+ tan28) = I, [l+A2 sin2($+ +,)I 

t T2 

Thus 
j-d2+ = J; [l.+A2 ::2t$+$l,l (B-18) 

Equation (B-18) may now be integrated by setting u = l/r. Carrying out the integrations yields 

- cos -1 zh- M’G 
+ d(MG)2+2El;’ 1 12 

= 4 d/1+A2 tan 
-l [jicF tan.($ + &)I 

(B+Y) 
Solving for T gives 

rr 
M’G -I- @‘G,2+ 2BI,2 ‘cos { (B-20) 

Rearranging equation (B-20) into standard form 

‘I= I+ J-cc= [ l;$ a-1 [$ + A2 tan (4 + +1 )I} . (B-21) 

Two of the orbital parameters, the semi-major axis, a, and eccentricity, e, can be immediately 
recognized from equation (B-21) by requiring the orbit to be a conic section. 

(B-22) 

l2 a(l-e2J= 2 
MG . (B-23) 
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M.G u=- - 
2E 

The inclination may still be found by applying equation (40) to the cutoff values of q5= and 
dC. These parameters will be required to study rendezvous techniques. 

If no orbital inclination change is to occur during free-flight transfer, the above system of 
equations reduce to the more familiar Keplerian description; however, the reference plane must 
be chosen as the same plane in which the vehicle achieves cutoff (i. e., circular) conditions. 

Equation (B-21) is far more complicated than necessary. We may begin the simplification 
by noting that, from (B-15) 

1, 1, 
1, d 1+Az E; l1 set 1 (B-25) 

From equations ( B-4) and (B-5), we have 

-_ 
4 = Je2+ 4’ cos2 

1, set 1 c0s2tlsec 1.4 (B-26) 

Differientating (B-14) with respect to time and substituting the value of A from (B-15) yields 

fj= tan1 cos (+++,)$ 
l+ tan21 sin2 (4-t 4,) (B-27) 

Eliminating 6 in equation (B-26) via equation (B-27) and the function of 8 by 

cos e = 1 
dl+tarC!fsiti ($+qS,) (B-28) 

yields 

1, 
1, set 1 =l 

(B-29) 

The resultant trigonometric function appearing in equation (B-21) may now be readily 
simplified. We begin by noting that, for any argument. s, 

1 cos s = 
dl f tan2 s (B-30) 

Thus, replacing s+ tan-1 s we find 

cos(tan-1 s) = Al+ 1 1 
Ltan(tan-1s)J2 = 411~~. 

(B31) 

From this-. 

cos { tan’1 [set I tan (4 + q$ ) 1 1 = 1 
dl+ sec21 tan2(q5+ +I> 

Replacing se6 I by its elrpression from equation (B-1’4) gives 

cos j tab~[secItan(~+~,)l~=co.sBcos(~+~l) 

(B-32) 

(B-33) 
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Assembling the resuIts yields the final form of equation (B-21) as 

a (1 - e2) 
‘= 1+ec0st3c0s(+++1J 

(Bi34) 

Equation (B-7) may be regarded as an exprgssion for i in theory only. Numerical work with 
this equation shows that it is almost useless due to loss of significant figures. For this reason, 
w& differentiate equation (B-34) with respect to time to obtain a useable equation for i. Thus 

;= a(l-e2)e [sinf3cos($++,) fj+c0sf3sin(++f#3,)$1 
Il+e cos~cos(~+~1)J2 

= r2e[sinecos(++4,) 8+cost9sin(~$++,) Q] 
a (l- e2) 2 (B-35) 

Eliminating 8 and 6 as before we find 

i= (126 cosze)e cos8seczlsin(++~$~) 
a(l-e2) 

(B-36) 

Substituting for r2 4 co@ 8 from equation (B-4) and a (1 - e 2) from equation (B-23) gives 

i=e( ‘1 T ‘) (Jf)c0sSsecIsin(++C,) 

=e 
( ) 
9 c0sesec lsin($++r) 

2 

by equation (B-29). A convenient form for this equation may be obtained if we eliminate sin 
(I$ + 4,) by use of equation (B-14). For I # 0 we have 

. MG r=:e - ( ) 12 
sin e csc 1 

(B-38) 

Fa the case of 1 = 0 equation (B-37) becomes 

. 
t==e (B-39) 

Another datum of importance along the trajectory is time. To obtain an expression for this 
quantity which retains significant figures during numerical manipulations, we write equation 
(B-16) in the fam 

dt= d2Erz:&Gr- 1; 
(B-40) 

Substituting expressions for E and 1; from equations (B-24) and (B-23), respectively, gives 

rdr 

d a2e2- (U - r)2 
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The eccentric anomaly, &, may be introduced by defining 

a-r=aecos & 

From this definition comes 

f= a (1 -e cos G) (B;43) 

and 

dr=aesin&d& 

Substituting these expressions into equation (B-41) we find 

dt= 

or 

t-t*= J- $ (& -.e sin G) 

(B-42) 

(Bi44) 

(B-45) 

(B-46) 

The eccentric anomaly may now be related to a combination’ of the angles 4 and 8 as 
follo&: Let us define 

C~S 77= cog e cog (++.+,I 

The geometrical significance of ‘7 is shown in FIG 78. 

(Bi47) 

1 
. . . . ‘... ,. . . l- + + ..*.. 
y*.::I + + . -.. 
,jQ-. + 
: : * 

T 
-1 + . . + + + +‘+ + 

FIG 78. Geometrical Significance of 77 
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Equating the expression for I from equations (B-34) and (B-43) and solving for cos 7 results 
in 

cos q = cos -e & 
1 ---e cos b 

From this comes 

1 + cos q = (1 - e > (1 + cos G) 
1 - e cos t 

and 

1 - cos 77 = (l+e)(l-cos&) 

l- e cos & 

Then 

@48) 

(B-49) 

(B-50) 

(B-51) 

The preceding equations of this Appendix will be used to illustrate the method of attack that 
may be used to transfer from a circular orbit to another conic section. 

At any point along the powered trajectory that occurs after passing through circular orbit, 
the values of t, ;, 8, 8, 4, 4 are known by numerical integration of equations (85) through (92). 
Thus, the function represented by equation (B-7). 

E= $[ ;2+ r2(82+ d2cos2 e)] - F (B-52) 

serves to determine, E. The eccentricity can now be specified from equations (B-4), (B-5), and 
(B-22) as 

I 
$&i&f++ $2 c0s2e) (B-53) 

and the semi-major axis as in equation (B-24) 

M’G a=- - 
2E 

At each point the apogee altitude may be found from 

fs= a(l+ e) (B-54) 

and the perigee altitude from 

I P = a(1 -e) (B-55) 

If a “pseudo-Hohmann” transfer from circular orbit to a higher circular orbit is desired, the 
value of r will probably be prespecified (as well as the requirement that I > r). Several 
options areapossible, such as requiring that the final altitude of the final circula: orbit be equal 
to ,fa . Or, one might require an elliptical orbit of period equal to that of the circular orbit. 

In any case, the powered flight continues until such time as the specified orbital parameters 
are attained. For a direct parabolic escape one would merely require that cutoff occurs at 
E = 0 (ra = C-J). 
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APPENDIXC 

COMPUTER FLOWDIAGRAMS 

GENERALDATA FLOW 

a 
8 

cl 
3 
20 
8 

a 

Integrate 0 I Equations - 

ot- 
Motion 
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GENERALDATAFLOWFORCOMPUTER 

Initial Trajectory Parameters 

Input 

Desired Valuea for Isolation 

(I) 
t 

I I 
Start Search For Desired Values 

t 
I -I 

Save 

starting Values 

t 

Inltlellzation 

A,= X1t cos 8 tan y 

A,= ( CA,2 + (A, I cos e)q1’2’tan y I’/cos 8 

Evaluate MR Block 

I54 

t 
To Integration Block 



INTEGRATION BLOCK 

n = Typical Time Step and m = 1, 2, 3, ‘4, 5 

Compute 

r1 = ro+ F. At /2 
. 
r1 = i, + Fao A t / 2 
0, = O,+ 8, At/2 
8, = do+ 6, At/2 
c&= +,,+ 4, At/2 
&= &+ &At/2 

(A,), = (A,), + (i,), At /2 
t,=t,+At/‘2 

I 

t 
Evaluate M R Block . . . 

i =/(fl. F1, t,); i=ite,, 8,. tl) ; 4=/c+,, +1, tl) ; x,=/[(hJ,, tll 

t 
Comp te 

r2 = r,,+ i1 At/2 
. 
r2 =;,+T1 At/2 

8, = e,+ i1 At/2 

t$ = i,+ i, At/2 

42’ +o+ il At/2 
&= .j,+ 4, At/2 

(A,), = (A,), + Ci,), At/2 

t2 =to +,At/2 

I Evaluate MR Block I 

I F =l(+ b t,); li=f(e,, e’*, t2) ; &/(+2, &, t,) ; i,=/[(x,),, t2 1 I 
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Compute 

T3 = r. + ;2 At 

f3 =ro +& At 

e,=e,+f$ At 

i,=i,+i$ At 

+3=5+6& 

&=&+&At 

(A m)3 = (A Jo + &,,A t 

t3=to +At 

t 

Evaluate M R Block 

I f 
Compute 

T I-s+1 = r,+(;,At+2:, At+2;,At+:, At)/6 
. 
rn+ 1 = i,+GaAt+2;I At+2&At+i3 Ad/6 

8 n+l =e,+(i,At+2i, At+2i, At+;, At)/6 

6 nfl =&+(&At+2& At+28, At+;, At)/6 

9 “+, +,+(&At+2& At+2&At+$, At)/6 

i n+1 
=cj, +(G, At+2& At+2& At+G3 At)/6 

hn)” + 1 =(A,),, +Iti,,, At+2&,), At+&), At+o;J, At116 

tri+x = to +At 

4 
Evaluate M R Block 

. 
i=ibn+ 1, ;n+l, fn+l);-8=/(e,+1, en+ll tn+J; dj =1(4,+1s $n+lr tnCl); k,=/[(Am)n+lT tn+J 

4 
To Control Block 



CONTROLBLOCK 

No 

MG=ii*+ r3(e*++*COS*e) To Integration 
Block 

t 
No 

To Start Search 
Block 

To Input Block 

To Input Block 

To Start Search Block 
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MR BLOCK 

Compute 

x1 r cos e 1 MG -- 2 h*t2+#9 1 cos*B+A~ ~2 +t (B2+J2cos2e) 

li= 
[ 

a(go)c (gob Ia, ]I h2 cos 8 1 23 --- 
(go), Isp -a (go), t r&: r2+ A: kd3 + + r 

42sin e cos 8 

+ 
L 
a (g0A (g0h fan A3 . . 2;4 
~&To), Imp- Q (go), t 

][ - scose~~~p2+hy cos2e+x; I 
+28$tan8- 7 

x;= ; (x,l++x,&-A, 

&= - Z&Z cos e.- A 2 sin e) 4 cos 8 + A, (6 tan 8 - ; )I - Cl 

i 
q + @2+ $2co~2 e)- $ (h,B + A,& 

3. 

. 
i4= - A, 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, 1963 
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